科微学术

微生物学通报

铜绿假单胞菌对青霉素类抗生素异质性耐药研究
作者:
基金项目:

广东省基础与应用基础研究基金(2021A1515011080,2020A1515010850)


Heteroresistance of Pseudomonas aeruginosa to penicillins
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】铜绿假单胞菌是临床上常见的条件致病菌,其异质性耐药的发生常导致临床治疗失败。【目的】研究铜绿假单胞菌对青霉素类抗生素的异质性耐药情况,为相关临床感染治疗提供一定的依据。【方法】收集临床分离的50株铜绿假单胞菌,采用纸片扩散法(disk diffusion method)即Kirby-Bauer (K-B)法、菌落谱型分析(population analysis profile,PAP)法、生长实验以及传代稳定性实验探究铜绿假单胞菌的异质性耐药特征。【结果】K-B法初筛得到铜绿假单胞菌对哌拉西林(piperacillin,PIP)、哌拉西林/他唑巴坦(piperacillin/tazobactam,TZP)和替卡西林/克拉维酸(ticarcillin/clavulanic acid,TIM)的异质性耐药率分别为52%、52%和54%。PAP实验确认后有13株异质性耐药菌,其检出率占总实验菌株的26%。随机选取8株异质性耐药菌株,其耐药亚群的发生频率为7.3×10−7−1.2×10−5。通过无抗生素压力的生长实验发现,异质性耐药菌株PAS92、PAS57与其各自的3株最高PIP浓度平板上的耐药亚群的生长速度均差异无统计学意义(P>0.05),但PAS92抑菌圈内的耐药亚群比PAS92的生长速度快(8−12 h),有极显著差异(P=0.002 2<0.01)。抑菌圈内不同耐药水平的耐药亚群及从PAP实验中最高PIP浓度平板上挑取的高水平耐药亚群在无抗生素压力下传代培养,发现仅有一株耐药亚群不稳定且恢复到原始菌株的药物敏感水平,其他菌株耐药稳定性良好。【结论】铜绿假单胞菌对青霉素类抗生素的异质性耐药率相对偏低,但异质性耐药亚群的发生频率较高,而且对哌拉西林的耐药水平较高,大多耐药亚群传代稳定性良好。因此在使用该类抗生素治疗时应更加注意异质性耐药现象的发生,防止更高水平耐药菌的出现而导致治疗失败。

    Abstract:

    [Background] Pseudomonas aeruginosa (PA) is a common opportunistic pathogen in clinical practice, and its heteroresistance often leads to failure of clinical treatment. [Objective] To study the heteroresistance of PA to penicillins, and to provide a basis for the treatment of related clinical infections. [Methods] We collected 50 clinical isolates of PA and investigated their heteroresistance characteristics by using disk diffusion method (Kirby-Bauer (K-B) test), population analysis profile (PAP), growth assay and passage stability test. [Results] According to the preliminary screening results obtained with K-B test, 52%, 52%, and 54% of the PA isolates had heteroresistance to piperacillin (PIP), piperacillin/tazobactam (TZP) and ticarcillin/clavulanic acid (TIM), respectively. Thirteen (26%) strains were confirmed to have heteroresistance by PAP. Eight heteroresistant strains were randomly selected, and the frequency of resistant subpopulations ranged from 7.3×10−7 to 1.2×10−5. Without antibiotic pressure, the heteroresistant strains PAS92 and PAS57 and their three subpopulations on the plates with the highest PIP concentration showed no statistical difference in growth rate (P>0.05), while the growth of the subpopulations in the inhibition zone of PAS92 was faster than that of PAS92 within 8–12 h (P=0.002 2<0.01). The subpopulations with different levels of resistance in the inhibition zone and those with high levels of resistance selected from the plates with the highest PIP concentration in PAP were subcultured without antibiotic pressure. Only one of the subpopulations was found to be unstable and returned to the sensitivity level of the original strain, while the others had good stability of resistance. [Conclusion] In this study, PA isolates show low heteroresistance ratio while high frequency of resistant subpopulations to penicillins. Besides, they have high heteroresistance to PIP, and most of the resistant subpopulations had good passage stability. Therefore, when using this type of antibiotics, attention should be paid to the occurrence of heteroresistance to prevent the emergence of strains with higher drug-resistance from causing treatment failure.

    参考文献
    [1] Buehrle DJ, Shields RK, Clarke LG, Potoski BA, Clancy CJ, Nguyen MH. Carbapenem-resistant Pseudomonas aeruginosa bacteremia: risk factors for mortality and microbiologic treatment failure[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(1): 01243-16
    [2] 喻容, 石燕, 齐志强, 陈拥军, 聂英, 石国民, 向延根. 1445株铜绿假单胞菌临床感染的耐药性分析[J]. 检验医学与临床, 2012, 9(8): 940-941 Yu R, Shi Y, Qi ZQ, Chen YJ, Nie Y, Shi GM, Xiang YG. Analysis of antibiotic resistance of 1445 strains of Pseudomonas aeruginosa clinical infection[J]. Laboratory Medicine and Clinic, 2012, 9(8): 940-941 (in Chinese)
    [3] 李飞. 450株铜绿假单胞菌的临床分布及药敏分析[J]. 中国医药指南, 2012, 10(2): 14-15 Li F. 450 strains Pseudomonas aeruginosa clinical distribution and drug susceptibility[J]. Guide of China Medicine, 2012, 10(2): 14-15 (in Chinese)
    [4] 张鑫. 铜绿假单胞菌: 院感常见且高致死[N]. 医师报, 2021-03-18 (B04) Zhang X. Pseudomonas aeruginosa: hospital infection is common and highly lethal[N]. Physicians reported, 2021-03-18 (B04) (in Chinese)
    [5] 张芳, 尹德明. 呼吸道感染铜绿假单胞菌耐药特点分析[J]. 医学检验与临床, 2006(3): 12-13 Zhang F, Yin DM. Analysis of the bacterial resistance of respiratory tract infection with Pseudomons aeruginosa[J]. Medical Laboratory Science and Clinics, 2006(3): 12-13 (in Chinese)
    [6] Gniadkowski M, Skoczyńska A, Fiett J, Trzciński K, Hryniewicz W. Susceptibility of Pseudomonas aeruginosa isolated from hospital infections to antibiotics[J]. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego, 1998, 5(30): 346-350
    [7] Alexander HE, Leidy G. Influence of streptomycin on type b Haemophilus influenzae[J]. Science, 1946, 104(2692): 101-102
    [8] Kayser FH, Benner EJ, Hoeprich PD. Acquired and native resistance of Staphylococcus aureus to cephalexin and other β-lactam antibiotics[J]. Applied Microbiology, 1970, 20(1): 1-5
    [9] Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nature Reviews Microbiology, 2019, 17(8): 479-496
    [10] SØGaard P, Gahrn-Hansen B. Population analysis of susceptibility to ciprofloxacin and nalidixic acid in Staphylococcus, Pseudomonas aeruginosa, and Enterobacteriaceae[J]. Acta Pathologica Microbiologica Scandinavica Series B: Microbiology, 1986, 94B(1/6): 351-356
    [11] 马幸延, 李虹霖, 鲁洋, 蔡依玫, 张伟铮, 曾建明, 陈茶, 黄彬. 铜绿假单胞菌对碳青霉烯类抗生素异质性耐药的临床特征与危险因素分析[J]. 热带医学杂志, 2019, 19(4): 398-403 Ma XY, Li HL, Lu Y, Cai YM, Zhang WZ, Zeng JM, Chen C, Huang B. Clinical features and risk factors analysis of carbapenems heteroresistance in Pseudomonas aeruginosa[J]. Journal of Tropical Medicine, 2019, 19(4): 398-403 (in Chinese)
    [12] 吴婷婷, 芮志莲, 徐敏, 邵启祥. 铜绿假单胞菌亚胺培南异质性耐药的机制[J]. 江苏大学学报(医学版), 2018, 28(4): 297-301 Wu TT, Rui ZL, Xu M, Shao QX. Mechanisms of heterogeneous drug resistance against imipenem in Pseudomonas aeruginosa[J]. Journal of Jiangsu University: Medicine Edition, 2018, 28(4): 297-301 (in Chinese)
    [13] 何建春. 铜绿假单胞菌和大肠埃希菌碳青霉烯异质性耐药及机制研究[D]. 重庆: 重庆医科大学硕士学位论文, 2018 He JC. Study on the molecular mechanism of carbapenem heteroresistance in Pseudomonas aeruginosa and Escherichia coli[D]. Chongqing: Master’s Thesis of Chongqing Medical University, 2018 (in Chinese)
    [14] 许磊. 铜绿假单胞菌多粘菌素异质性耐药及联合药敏研究[D]. 杭州: 浙江大学硕士学位论文, 2016 Xu L. Colistin heteroresistance and drug combination study of Psoudomonas aeruginosa[D]. Hangzhou: Master’s Thesis of Zhejiang University, 2016 (in Chinese)
    [15] 中华人民共和国卫生部医政司. 全国临床检验操作规程[M]. 4版. 北京: 人民卫生出版社,2015 Medical Administration Department of Ministry of Public Health, P. R. C. National Guide to Clinical Laboratory Procedures[M]. 4th ed. Beijing: People’s Medical Publishing House, 2015
    [16] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 29th informational supplement. CLSI document M100-S29[S]. Clinical and Laboratory Standards Institute, 2019
    [17] El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity[J]. Clinical Microbiology Reviews, 2015, 28(1): 191-207
    [18] Linkevicius M, Sandegren L, Andersson DI. Mechanisms and fitness costs of tigecycline resistance in Escherichia coli[J]. Journal of Antimicrobial Chemotherapy, 2013, 68(12): 2809-2819
    [19] 吴婷婷. 异质性耐药铜绿假单胞菌的检测和耐药机制的分析[D]. 镇江: 江苏大学硕士学位论文, 2018 Wu TT. Mechanism and detection of heteroresistant Pseudomonas aeruginosa[D]. Zhenjiang: Master’s Thesis of Jiangsu University, 2018 (in Chinese)
    [20] Jia XJ,Ma WJ,He JC,Tian XL, Liu H, Zou H, Cheng S. Heteroresistance to cefepime in Pseudomonas aeruginosa bacteraemia[J]. International Journal of Antimicrobial Agents, 2020, 55(3): 105832
    [21] Cuenca FF, Sanchez MDG, Caballero-Moyano FJ, Vila J, Martinez-Martinez L, Bou G, Rodriguez-Bano J, Pascual A. Prevalence and analysis of microbiological factors associated with phenotypic heterogeneous resistance to carbapenems in Acinetobacter baumannii[J]. International Journal of Antimicrobial Agents, 2012, 39(6): 472-477
    [22] Hjort K, Nicoloff H, Andersson DI. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enteric[J]. Molecular Microbiology, 2016, 102(2): 274-289
    [23] Pournaras S, Ikonomidis A, Markogiannakis A, Spanakis N, Maniatis AN, Tsakris A. Characterization of clinical isolates of Pseudomonas aeruginosa heterogeneously resistant to carbapenems[J]. Journal of Medical Microbiology, 2007, 56(1): 66-70
    [24] Pournaras S, Kristo I, Vrioni G, Ikonomidis A, Poulou A, Petropoulou D, Tsakris A. Characteristics of meropenem heteroresistance in Klebsiella pneumonia carbapenemase (KPC)-producing clinical isolates of K. pneumoniae[J]. Journal of Clinical Microbiology, 2010, 48(7): 2601-2604
    [25] Hindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug resistant Gram-negative bacilli[J]. Journal of Clinical Microbiology, 2013, 51: 1678-1684
    [26] Barin J, Martins AF, Heineck BL, Barth AL, Zavascki AP. Hetero- and adaptive resistance to polymyxin B in OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolates[J]. Annals of Clinical Microbiology and Antimicrobials, 2013, 12: 15
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张亚会,李文茹,廖康,黄旭斌,张月星,谢小保. 铜绿假单胞菌对青霉素类抗生素异质性耐药研究[J]. 微生物学通报, 2022, 49(5): 1786-1798

复制
分享
文章指标
  • 点击次数:466
  • 下载次数: 951
  • HTML阅读次数: 921
  • 引用次数: 0
历史
  • 收稿日期:2021-08-03
  • 录用日期:2021-09-17
  • 在线发布日期: 2022-05-05
文章二维码