科微学术

微生物学通报

2019-2020年苏中地区某活禽市场H9N2禽流感病毒分子进化
作者:
基金项目:

江苏省重大科技示范项目(BE2017749)


Genetic evolution of avian influenza A (H9N2) virus in a live poultry market in central Jiangsu, China, 2019–2020
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】20世纪90年代以来,H9N2禽流感病毒成为危害我国养禽业及人类健康和公共卫生的重要病原。【目的】了解苏中地区2019−2020年活禽市场H9N2禽流感病毒的分子进化特征。【方法】通过荧光定量PCR法对标本进行流感病毒分型检测,原始标本用SPF鸡胚进行病毒分离,用特异性引物对病毒分离物进行全基因组测序,利用Blast、ClustalX和Mega 6等软件进行序列比对和系统发育分析。【结果】2019−2020年间从苏中地区某农贸市场采集到231份环境和禽类标本,共检出34份甲型流感病毒,其中33份为H9N2亚型。阳性标本接种SPF鸡胚,分离到20株H9N2病毒。对其中11株病毒进行全基因组测序,系统发育分析表明11株病毒的HA和NA都属于H9N2禽流感Y280-like系的G57基因型。根据HA和NA的进化特征,11株病毒可分为5个基因组合(A、B、C、D和E),其中A (n=5)是优势流行基因组合。11株H9N2分离病毒的HA蛋白HA1和HA2亚单位的裂解位点是一个碱性氨基酸R,具有低致病性禽流感病毒的特征。HA蛋白的受体结合部位有4个氨基酸位点(I155T、H183N、A190T/V和Q226L)发生突变,推测这些病毒可能增强了对人SAα2-6Gal受体的结合力。【结论】苏中地区活禽市场H9N2禽流感病毒进化活跃,存在外溢传播人的风险,应该加强对活禽市场禽流感病毒的监测和跨种传播的研究。

    Abstract:

    [Background] Since the 1990s, H9N2 avian influenza virus has become a major threat to human and animal health. [Objective] To understand the molecular evolutionary characteristics of H9N2 avian influenza virus in a live poultry market in central Jiangsu, 2019–2020. [Methods] The specimens were detected by real-time quantitative PCR method, and SPF chicken embryos were used for the isolation of virus strains from the specimens. The whole genome of each isolate was sequenced with specific primers. Blast, ClustalX and Mega 6 were used for sequence alignments and phylogenetic analysis. [Results] A total of 231 environmental and poultry specimens were collected from a farmers’ market from 2019 to 2020, from which of 34 influenza A virus strains were detected, including 33 strains of H9N2 subtype. Twenty strains of H9N2 virus were isolated with SPF chicken embryos, and the whole genomes of 11 strains were sequenced and aligned. The HA and NA gene sequences indicated that the 11 strains belonged to G57 genotype of Y280-like lineage. According to the evolutionary characteristics of HA and NA, the 11 strains can be divided into 5 gene constellations (A, B, C, D and E), of which constellation A (n=5) was dominant. The cleavage site of HA1 and HA2 subunits of HA protein of the 11 strains was a basic amino acid R, which indicated low pathogenicity. Four mutations (including I155T, H183N, A190T/V and Q226L) were occurred in the receptor-binding region of HA protein, indicating that these viruses had enhanced ability of binding to human SAα2-6Gal receptor. [Conclusion] The H9N2 avian influenza virus in the live poultry market in central Jiangsu is characterized by active evolution and has a risk of transmission to people. Efforts should be made to strengthen the monitoring and the research on cross-species transmission of avian influenza virus in the live poultry market.

    参考文献
    [1] Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses[J]. Advances in Genetics, 1992, 56(1): 152-179
    [2] Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM. Global patterns of influenza a virus in wild birds[J]. Science, 2006, 312(5772): 384-388
    [3] Fouchier RAM, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus ADME. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls[J]. Journal of Virology, 2005, 79(5): 2814-2822
    [4] Tong SX, Zhu XY, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen XF, Recuenco S, Gomez J, et al. New world bats harbor diverse influenza A viruses[J]. PLoS Pathogens, 2013, 9(10): e1003657
    [5] Homme PJ, Easterday BC. Avian influenza virus infections. I. Characteristics of influenza A-Turkey-Wisconsin-1966 virus[J]. Avian Diseases, 1970, 14(1): 66-74
    [6] Peacock THP, James J, Sealy JE, Iqbal M. A global perspective on H9N2 avian influenza virus[J]. Viruses, 2019, 11(7): 620
    [7] 陈伯伦, 张泽纪, 陈伟斌. 鸡A型禽流感病毒的分离与血清学初步鉴定[J]. 中国家禽, 1997, 19(11): 5-7 Chen BL, Zhang ZJ, Chen WB. Isolation and preliminary serological identification of avian influenza virus-type A from chickens[J]. China Poultry, 1997, 19(11): 5-7 (in Chinese)
    [8] Li C, Wang SG, Bing GX, Carter RA, Wang ZJ, Wang JL, Wang CX, Wang L, Wu G, Webster RG, et al. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013[J]. Emerging Microbes & Infections, 2017, 6(11): e106
    [9] Peiris JSM, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health[J]. Clinical Microbiology Reviews, 2007, 20(2): 243-267
    [10] 姜慧, 赖圣杰, 秦颖, 张志杰, 冯录召, 余宏杰. 全球人感染禽流感疫情及其流行病学特征概述[J]. 科学通报, 2017, 62(19): 2104-2115 Jiang H, Lai SJ, Qin Y, Zhang ZJ, Feng LZ, Yu HJ. A review of global human infection with avian influenza and epidemiological characteristics[J]. Chinese Science Bulletin, 2017, 62(19): 2104-2115 (in Chinese)
    [11] Kwon HJ, Cho SH, Kim MC, Ahn YJ, Kim SJ. Molecular epizootiology of recurrent low pathogenic avian influenza by H9N2 subtype virus in Korea[J]. Avian Pathology, 2006, 35(4): 309-315
    [12] Youk SS, Lee DH, Jeong JH, Pantin-Jackwood MJ, Song CS, Swayne DE. Live bird markets as evolutionary epicentres of H9N2 low pathogenicity avian influenza viruses in Korea[J]. Emerging Microbes & Infections, 2020, 9(1): 616-627
    [13] Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses[J]. Virus Genes, 2019, 55(6): 739-768
    [14] Sun XJ, Belser JA, Maines TR. Adaptation of H9N2 influenza viruses to mammalian hosts: a review of molecular markers[J]. Viruses, 2020, 12(5): 541
    [15] Ho HT, Hurt AC, Mosse J, Barr I. Neuraminidase inhibitor drug susceptibility differs between influenza N1 and N2 neuraminidase following mutagenesis of two conserved residues[J]. Antiviral Research, 2007, 76(3): 263-266
    [16] Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF. Human infection with influenza H9N2[J]. Lancet, 1999, 354(9182): 916-917
    [17] Dong X, Xiong JS, Huang CL, Xiang J, Wu WJ, Chen NS, Wen DN, Tu C, Qiao XL, Kang L, et al. Retracted article: human H9N2 avian influenza infection: epidemiological and clinical characterization of 16 cases in China[J]. Virologica Sinica, 2021, 36(3): 564
    [18] Chen Y, Zheng Q, Yang K, Zeng F, Lau SY, Wu WL, Huang S, Zhang J, Chen H, Xia N. Serological survey of antibodies to influenza A viruses in a group of people without a history of influenza vaccination[J]. Clinical Microbiology and Infection, 2011, 17(9): 1347-1349
    [19] Huang R, Wang AR, Liu ZH, Liang W, Li XX, Tang YJ, Miao ZM, Chai TJ. Seroprevalence of avian influenza H9N2 among poultry workers in Shandong province, China[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2013, 32(10): 1347-1351
    [20] Wang M, Fu CX, Zheng BJ. Antibodies against H5 and H9 avian influenza among poultry workers in China[J]. The New England Journal of Medicine, 2009, 360(24): 2583-2584
    [21] Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: influenza virus receptors in the human airway[J]. Nature, 2006, 440(7083): 435-436
    [22] Cauldwell AV, Long JS, Moncorgé O, Barclay WS. Viral determinants of influenza A virus host range[J]. The Journal of General Virology, 2014, 95(Pt 6): 1193-1210
    [23] Guan Y, Shortridge KF, Krauss S, Webster RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong?[J]. PNAS, 1999, 96(16): 9363-9367
    [24] Gao RB, Cao B, Hu YW, Feng ZJ, Wang DY, Hu WF, Chen J, Jie ZJ, Qiu HB, Xu K, et al. Human infection with a novel avian-origin influenza A (H7N9) virus[J]. The New England Journal of Medicine, 2013, 368(20): 1888-1897
    [25] Bi YH, Chen QJ, Wang QL, Chen JJ, Jin T, Wong G, Quan CS, Liu J, Wu J, Yin RF, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China[J]. Cell Host & Microbe, 2016, 20(6): 810-821
    [26] Chen ZK, Huang QH, Yang SH, Su S, Li BQ, Cui N, Xu CT. A well-defined H9N2 avian influenza virus genotype with high adaption in mammals was prevalent in Chinese poultry between 2016 to 2019[J]. Viruses, 2020, 12(4): 432
    [27] Pu J, Wang SG, Yin YB, Zhang GZ, Carter RA, Wang JL, Xu GL, Sun HL, Wang M, Wen C, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus[J]. PNAS, 2015, 112(2): 548-553
    [28] Bi YH, Tan SG, Yang Y, Wong G, Zhao M, Zhang QC, Wang Q, Zhao XN, Li LQ, Yuan J, et al. Clinical and immunological characteristics of human infections with H5N6 avian influenza virus[J]. Clinical Infectious Diseases, 2018, 68(7): 1100-1109
    [29] Swayne DE. Impact of vaccines and vaccination on global control of avian influenza[J]. Avian Diseases, 2012, 56(4 Suppl): 818-828
    [30] Song WJ, Qin K. Human-infecting influenza A (H9N2) virus: a forgotten potential pandemic strain?[J]. Zoonoses and Public Health, 2020, 67(3): 203-212
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

翟晓虎,贺卫华,赵学刚,李玲,祁贤. 2019-2020年苏中地区某活禽市场H9N2禽流感病毒分子进化[J]. 微生物学通报, 2022, 49(5): 1731-1740

复制
分享
文章指标
  • 点击次数:240
  • 下载次数: 869
  • HTML阅读次数: 908
  • 引用次数: 0
历史
  • 收稿日期:2021-09-14
  • 录用日期:2021-12-01
  • 在线发布日期: 2022-05-05
文章二维码