科微学术

微生物学通报

基于单细菌共焦拉曼光谱的细菌快速检测
作者:
基金项目:

国家重点研发计划(2017ZX10304403003003);军队重点项目(20SWAQX06)


Rapid identification of five species of bacteria based on confocal Raman spectroscopy of single bacterial cells
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】目前利用共焦拉曼光谱技术进行成像和成分鉴别方面的研究较多,但如何快速检测与鉴别多种细菌方面的研究较少。【目的】基于共焦拉曼光谱技术,建立一种在单细菌水平上实现病原微生物快速分类鉴定的方法。【方法】以大肠杆菌为研究对象,利用共焦拉曼光谱技术在单细菌水平上进行了激发波长的优化试验,并研究了大肠杆菌存放时间对单细菌拉曼光谱信息的影响。同时,对白色葡萄球菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌和铜绿假单胞菌进行了共焦拉曼光谱测试,并对5种细菌进行单细菌拉曼光谱的归属分析,设计共焦拉曼光谱技术结合支持向量机(support vector machine,SVM)模型学习算法,进行了5种细菌的快速分类鉴别。【结果】对于单细菌拉曼光谱探测,532、633和785 nm这3种常见的拉曼探测波长中,532 nm具有更好的激发效率和光谱信噪比。结合SVM模型对5种细菌的识别分类,SVM模型的灵敏度和特异性达到了96.00%以上,整体准确率为98.25%。不同存放时间下大肠杆菌拉曼光谱的重复性和稳定性都很好,且SVM模型匹配率均在90.00%以上。【结论】单细菌拉曼光谱结合SVM模型可对5种细菌进行快速、准确的分类,不同存放时间对大肠杆菌拉曼光谱的归类识别几乎无影响。

    Abstract:

    [Background] Despite the extensive research on the application of confocal Raman spectroscopy in imaging and component identification, there are few studies focusing on the rapid detection and identification of a variety of bacteria. [Objective] A method for rapid classification and identification of single bacterial cells was established with confocal Raman spectroscopy. [Methods] We optimized the excitation wavelength of confocal Raman spectroscopy by using the single cells of Escherichia coli, and studied the influence of storage time on the Raman spectrum of E. coli. Furthermore, we performed confocal Raman spectroscopy tests for Staphylococcus albus, Escherichia coli, Staphylococcus aureus, Salmonella, and Pseudomonas aeruginosa. We then analyzed the Raman spectra of the 5 bacterial species to design a rapid identification method combining confocal Raman spectroscopy with support vector machine (SVM) model for the 5 bacterial species. [Results] Among the three common Raman detection wavelengths of 532, 633, and 785 nm, 532 nm had the best excitation efficiency and spectral signal-to-noise ratio for the identification of single bacterial cells. The SVM model showed the sensitivity and specificity above 96.00% and the overall accuracy rate of 98.25% for the identification of these bacteria. Moreover, the Raman spectra showed good repeatability and stability for the E. coli stored for different time, and the matching rate of SVM model was above 90.00%. [Conclusion] Single-cell Raman spectroscopy combined with SVM model can quickly and accurately classify the five bacterial species, and different storage time has little effect on the identification of E. coli based on Raman spectra.

    参考文献
    [1] 孙丹, 曹方浩, 丛丽丽, 徐蔚青, 陈奇丹, 徐抒平. 基于微流控液滴的单细胞拉曼分析技术[J]. 光谱学与光谱分析, 2018, 38(S1): 225-226 Sun D, Cao FH, Cong LL, Xu WQ, Chen QD, Xu SP. The Raman analysis for single cell based on microfluidic droplet[J]. Spectroscopy and Spectral Analysis, 2018, 38(S1): 225-226 (in Chinese)
    [2] Cui L, Yang K, Zhou GW, Huang WE, Zhu YG. Surface-enhanced Raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level[J]. Analytical Chemistry, 2017, 89(11): 5793-5800
    [3] Zhou HB, Yang DT, Mircescu NE, Ivleva NP, Schwarzmeier K, Wieser A, Schubert S, Niessner R, Haisch C. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles[J]. Microchimica Acta, 2015, 182(13/14): 2259-2266
    [4] 高鹏亚, 苏英会, 孙晖, 滕中秋, 吴长德, 史芸, 袁洪福, 刘洋, 徐雪芳. 显微共聚焦拉曼技术在细菌分类鉴定中的应用[J]. 疾病监测, 2021, 36(1): 74-81 Gao PY, Su YH, Sun H, Teng ZQ, Wu CD, Shi Y, Yuan HF, Liu Y, Xu XF. Application of micro confocal Raman technique in classification and identification of bacteria[J]. Disease Surveillance, 2021, 36(1): 74-81 (in Chinese)
    [5] Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy[J]. Advanced Drug Delivery Reviews, 2015, 89: 105-120
    [6] Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541
    [7] 吕前辉, 王小华, 沈爱国, 胡继明. 拉曼光谱技术在现场快检分析领域中的应用[J]. 分析测试学报, 2019, 38(5): 612-617 Lü QH, Wang XH, Shen AG, Hu JM. Application of Raman spectroscopy techniques in on-site fast detection[J]. Journal of Instrumental Analysis, 2019, 38(5): 612-617 (in Chinese)
    [8] Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood N, Gardner B, Martin-Hirsch P, et al. Using Raman spectroscopy to characterize biological materials[J]. Nature Protocols: Recipes for Researchers, 2016, 11(4): 664-687
    [9] Li J, Wang C, Shi L, Shao L, Fu P, Wang K, Xiao R, Wang S, Gu B. Rapid identification and antibiotic susceptibility test of pathogens in blood based on magnetic separation and surface-enhanced Raman scattering[J]. Microchim. Acta, 2019, 186(7): 475
    [10] Fedosov IV, Tuchin VV. European conference on biomedical optics[EB/OL]. 2001. DOI: 10.1117/12.446678
    [11] Schlomo E, Burt VB, Jozsef C. Surface-enhanced Raman spectroscopy of bacteria coated by silver[J]. Proceedings of SPIE, CA: the International Society for Optical Engineering, 1999, 3602: 164
    [12] 高玮村, 李博, 王习文, 李乾学, 李楠, 李志萍, 夏志平. 基于表面增强拉曼技术快速检测5种食源性致病菌[J]. 吉林农业大学学报, 2017, 39(6): 733-737 Gao WC, Li B, Wang XW, Li QX, Li N, Li ZP, Xia ZP. Quick detection of five foodborne pathogenic bacteria based on surface enhanced Raman spectroscopy[J]. Journal of Jilin Agricultural University, 2017, 39(6): 733-737 (in Chinese)
    [13] Doughty DC, Hill SC. Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 103-117
    [14] Huang YP, Hu捡畮獧猠楓潃測嬠?嵡???湘晊爬愠牂敯摤?偰桰祡猠楎挬猠???呃教挬栠湙潩汮漠杈礬????????????㈠???????执爠?嬬㈠?嵥?吠潂測朠??丠???栠敓湨????婩桳慯湬条??????癰????婡桮散湥杤?塒塡??婮栠慡湮杤?婦塬???祥畳?塥???瀠灳汰楥捣慴瑲楯潳湣?潰晹?削慝洮愠湁?獧灥敷捡瑮牤潴獥挠潃灨祥?楩湥?琠桉敮?摥敲瑮敡捴瑩楯潮湡?漠晅?栠敩灮愠瑅楮瑧楬獩???瘠椲爰由猸?椠渵昷攨挲琵椩漺渠嬷?崲??倷栵漲琷漼摢楲愾杛渱漵獝椠獋?慥湦摥?倠桗漮琠潒摥祣湥慮浴椠捡?呶桡敮牣慥灳礠??㈠ぬ????????????????扥牡?嬠??嵭??漠牳牰敥楣慴?乯????慹琠楉獉瑛慊??吠???乲慮獡捬椠浯敦渠瑒潡?剡?????慣湴杲畯獳獣??????‰??听?″?爨由朲攩椺爠愱?倱????匲漵愼牢敲猾???偝??卡楦汩癥攠楌牁愮??牥????倠楡湤桶敡楮牣潥???????敮瑥敡捲琠楡潮湤?潮景?灬物潮獥瑡慲琠敒?捭慡湮挠敳牰?扣祴?副慳浣慯湰?献瀠敐捡瑲牴漠獉捖潛灊祝??慊?浵畲汮瑡楬瘠慯牦椠慒瑡敭?獮琠畓摰祥?潴湲?灳慣瑯楰敹測琠猲‰眱椰琬栠?渱漨爱洲愩氺?愱渵搶?愭氱琵攸父攼摢?倾卛??癝愠汍略敤獥孩?嵯???潅畏爬渠慁汲?漦昣′倵栰漻瑪潯挠桂敓洬椠獁瑹牡祬?愠湁摐?倠桒潡瑭潡扮椠潳汰潥杣祴?????楰潹氠潩杮祶???ど?ち???の???ㄠ??????扥牲?孡??嵳?卡楢湩杬桩?乹???甠浴慨牥?偭??剴楩慦穥?啲???瀠灃汵楃捬愼瑳極潢渾猲?漯晳?湢放愠牡?楤渠晩牴慳爠敨摹?慲湡摴?獤甠牦景慲捭敛?敝渮栠慖湩换敲摡?剩慯浮慡湬?獓捰慥瑣瑴敲牯楳湣杯?瑹攬挠栲渰椱焸甬攠猹?椺渠?琭甶洼潢牲 ̄楛洱愸杝椠湐杯??慥?獩栠潃爬琠?牥攠癖楩敳睥孮?嵩??卄瀬攠捄瑵牲潢捩桡楮浯椠捆愬??换瑥慴?倠慍牃琬?????潩氠敍挬甠汍慡牵?慩湮摯??椬漠浒潯汳敳捩甠汁慍爮?卄灥敶捥瑬牯潰獭捥潮灴礠??㈠ちㄠ?????㈠?????木??man spectroscopy approach for detection of NIAS in LDPE pellets and extruded films for food packaging applications[J]. Polymer Testing, 2019, 80: 106098
    [19] Chen JX, Zhong ZX, Su ZH, Li ZP, Weng ZF, Luo SY. Analysis of defects in biaxially oriented polypropylene films by micro-Fourier transform infrared and Raman spectroscopies[J]. Chinese Journal of Analytical Chemistry, 2020, 48(10): e20134-e20138
    [20] Tanwar S, Paidi SK, Prasad R, Pandey R, Barman I. Advancing Raman spectroscopy from research to clinic: translational potential and challenges[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 260: 119957
    [21] Bratchenko LA, Khristoforova YA, Moryatov AA, Bratchenko IA. Raman spectroscopy based diagnosis of dermatofibrosarcoma protuberans: case report[J]. Photodiagnosis and Photodynamic Therapy, 2021, 35: 102351
    [22] Brozek-Pluska B, Dziki A, Abramczyk H. Virtual spectral histopathology of colon cancer-biomedical applications of Raman spectroscopy and imaging[J]. Journal of Molecular Liquids, 2020, 303: 112676
    [23] Brozek-Pluska B, Kopec M, Surmacki J, Abramczyk H. Histochemical analysis of human breast tissue samples by IR and Raman spectroscopies. Protocols dis
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

窦雪晨,蔡田雨,王冠,刘培鹏,李抄,杜耀华,田丰. 基于单细菌共焦拉曼光谱的细菌快速检测[J]. 微生物学通报, 2022, 49(5): 1581-1593

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-14
  • 录用日期:2021-09-24
  • 在线发布日期: 2022-05-05
文章二维码