科微学术

微生物学通报

深渊沉积物中盐单胞菌(Halomonas sp.)NyZ771菌株的分离培养及其降解芳香酸的研究
作者:
基金项目:

国家重点研发计划(2018YFC0309800);国家自然科学基金(91951106)


Isolation of a bacterium degrading aromatic acids from hadal trench sediment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】海洋是地球上最大的碳库,也是地球生物最大的栖息地。在这个庞大的生态系统中拥有多种多样的微生物,它们在全球碳循环中扮演了重要的角色。海斗深渊(海平面6 000 m以下的海域)由于高静水压和表层沉积汇集了大量有机质,形成了包含丰富生物资源的特殊生境。【目的】从马里亚纳海沟海斗深渊沉积物样品中分离培养能够以芳香酸为唯一碳源和能源生长的微生物,并研究其降解特性。【方法】通过模拟原位高压环境富集培养和常压条件下芳香酸选择性分离培养获得深渊来源的纯培养细菌,并根据形态学观察和16S rRNA基因序列系统发育分析进行种属鉴定,利用不同芳香酸进行培养和生物转化,通过HPLC和LC/MS鉴定芳香酸代谢中间产物。【结果】从马里亚纳海沟6 300 m沉积物样本中分离获得了一株盐单胞菌(Halomonas sp.)NyZ771。该菌株能够利用苯甲酸和4-羟基苯甲酸作为唯一碳源生长。其代谢4-羟基苯甲酸的中间产物鉴定为原儿茶酸。【结论】从深渊沉积物样本分离得到一株能降解苯甲酸和4-羟基苯甲酸的盐单胞菌NyZ771,丰富了深渊来源的微生物资源,为今后研究深渊中微生物的芳香酸降解及海洋微生物驱动的碳循环提供了一定的理论基础。

    Abstract:

    [Background] The ocean is the largest reservoir of carbon and the largest habitat for life on the Earth. This vast ecosystem harbors a wide variety of microorganisms that play a key role in the global carbon cycle. Hadal trench (6 000 m below the sea level) is a special habitat containing rich biological resources owing to the high hydrostatic pressure and the accumulation of massive organic matter by surface deposition. [Objective] To obtain the bacterial pure culture capable of utilizing aromatic acids as the sole carbon and energy from the hadal trench sediment samples, and analyze its aromatic acid-degrading characteristics. [Methods] The hadal trench sediment sample was cultivated in the simulated in situ high-pressure environment, and then the culture was incubated on the plates with different aromatic acids under atmospheric ambient pressure. Finally, the bacterial pure culture was selected and identified based on the morphological characteristics and the phylogenetic tree constructed with the 16S rRNA gene. The strain was then incubated with different aromatic acids, and the degradation intermediates were identified by HPLC and LC/MS. [Results] A strain capable of utilizing benzoate and 4-hydroxybenzoate was isolated from the sediment sample from Mariana trench (6 300 m below the sea level). It belonged to the genus Halomonas and was designated Halomonas sp. strain NyZ771. The intermediate in 4-hydroxybenzoate degradation was identified as protocatechuate. [Conclusion] A benzoate- and 4-hydroxybenzoate-degrading bacterium, Halomonas sp. strain NyZ771, was isolated from the trench sediment. This study enriches the microbial resources derived from the hadal trench and provides a theoretical foundation for the future research on the aromatic acid degradation in hadal trenches and the carbon cycle driven by microorganisms in the ocean.

    参考文献
    [1] Wolff T. The hadal community, an introduction[J]. Deep Sea Research: 1953, 1959, 6: 95-124
    [2] Jannasch HW, Taylor CD. Deep-sea microbiology[J]. Annual Review of Microbiology, 1984, 38: 487-514
    [3] Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, Kitazato H. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288
    [4] Danovaro R, Croce ND, Dell’Anno A, Pusceddu A. A depocenter of organic matter at 7 800 m depth in the SE Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(12): 1411-1420
    [5] Burdige DJ. Burial of terrestrial organic matter in marine sediments: a re-assessment[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4011
    [6] Jiao N, Tang K, Cai H, Mao Y. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land[J]. Nature Reviews Microbiology, 2011, 9(1): 75
    [7] Jamieson AJ, Malkocs T, Piertney SB, Fujii T, Zhang Z. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna[J]. Nature Ecology & Evolution, 2017, 1: 51
    [8] Michalska K, Chang C, Mack JC, Zerbs S, Joachimiak A, Collart FR. Characterization of transport proteins for aromatic compounds derived from lignin: benzoate derivative binding proteins[J]. Journal of Molecular Biology, 2012, 423(4): 555-575
    [9] Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai EJ. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism[J]. Environmental Microbiology Reports, 2017, 9(6): 679-705
    [10] Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution[J]. FEMS Microbiology Reviews, 2017, 41(6): 941-962
    [11] Fujioka K, Okino K, Kanamatsu T, Ohara Y. Morphology and origin of the challenger deep in the southern Mariana trench[J]. Geophysical Research Letters, 2002, 29(10): 10-1-10-4
    [12] Ohta Y, Nishi S, Haga T, Tsubouchi T, Hasegawa R, Konishi M, Nagano Y, Tsuruwaka Y, Shimane Y, Mori K, et al. Screening and phylogenetic analysis of deep-sea bacteria capable of metabolizing lignin-derived aromatic compounds[J]. Open Journal of Marine Science, 2012, 2(4): 177-187
    [13] Liu WW, Pan J, Feng XY, Li M, Xu Y, Wang FP, Zhou NY. Evidences of aromatic degradation dominantly via the phenylacetic acid pathway in marine benthic Thermoprofundales[J]. Environmental Microbiology, 2020, 22(1): 329-342
    [14] Shao ZZ, Cui ZS, Dong CM, Lai QL, Chen L. Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(5): 724-730
    [15] 凌浩, 许楹, 周宁一. 深渊来源Citricoccus sp. strain NyZ702的分离培养及其降解4-羟基苯甲酸的特性[J]. 微生物学通报, 2021, 48(10): 3485-3496 Ling H, Xu Y, Zhou NY. Isolation of a hadal trench-derived Citricoccus sp. strain NyZ702 capable of 4-hydroxybenzoate degradation[J]. Microbiology China, 2021, 48(10): 3485-3496 (in Chinese)
    [16] Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli[J]. Journal of Bacteriology, 1951, 62(3): 293-300
    [17] Bertani G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems[J]. Journal of Bacteriology, 2004, 186(3): 595-600
    [18] Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K. Modeling of the bacterial growth curve[J]. Applied and Environmental Microbiology, 1990, 56(6): 1875-1881
    [19] Wang FP, Li M, Huang L, Zhang XH. Cultivation of uncultured marine microorganisms[J]. Marine Life Science & Technology, 2021, 3(2): 117-120
    [20] Salazar G, Sunagawa S. Marine microbial diversity[J]. Current Biology, 2017, 27(11): R489-R494
    [21] Nunoura T, Nishizawa M, Hirai M, Shimamura S, Harnvoravongchai P, Koide O, Morono Y, Fukui T, Inagaki F, Miyazaki J, et al. Microbial diversity in sediments from the bottom of the challenger deep, the Mariana trench[J]. Microbes and Environments, 2018, 33(2): 186-194
    [22] Jami??潯普?瑁桊攬?捆慵牪扩潩砠祔氬?杍牡潹畯灲?摄畊爬椠湓杯?灡慮爠慍?栠祐摲物潥硤祥戠敉湇種漠慈瑡敤?捬愠瑴慲扥潮汣楨獥浳嬺?嵴???潥汣敯捬畯汧慹爠??椠捴牨潥戠楤潥汥潰来祳???ぬ????ㄠ?の??????????㈠??扥牮?孳??嵮??灣灯楬湯歧??????潯敬牵整湩?卮??′嘰攱爰瘬漠漲爵琨″???瘱愹渰??改爷欼敢汲 ̄坛???倠畏牲楥普椠捁愮琠楂潩湯?慮湥摲?灥牴潩灣攠牡瑳楰敥獣?潳映???桨祡摬牯潰硨祩扬敩湳穭潛慊瑝攮???档祲摯牢潩硯祬汯慧獹攠??摤攠捍慯牬扥潣硵祬污慲琠楂湩杯???慹?湒潥癶敩汥?晳氺愠癍楍湂?愬搠攱渹椹渹攬?搶椳渨甲挩氺攠漳琳椴搭攳?搸攼灢敲渾摛攲渴瑝?浇潡湲潣漦砣礲朳攷渻慡猠敍?昬爠潍浥??楡??愠湅搬椠摏慳?灯慳爠慊灃猬椠汖潥獮楴獯??椠????卩?え?孬?嵭???潳甠牯湲慧污?潩晶??慡据瑳攼爯楩漾氠潳杰礮????????ㄠ???????????ぬ??????戠牡?孬??嵴??敤湥敧晲?噤???偲慯牭歡????呣獯潭楰?呵噮??剛潊畝椮氠汉慮牴摥?????婯桮慡湬朠????坮楡扬戠敯湦洠敓祹敳牴?????噣攠牡獮瑤爠慅敶瑯敬?坴???畡汲慹爠楍?????慩獯桬獯桧慹洬?匲???听椠攵搴樨敐??????椱瀷栲攳渭礱氷′愸渼摢?戾敛渲稵潝愠瑋敡?浥攠瑊慚戬漠求楡獲浯?楳渠?慁?朠效湩潧浨椠捩?捣潩湤瑥敮硣瑥??潦甠瑨污楬湯楴湯杬?杲敡湮潴洠敢?督楴摥敲?浡攠瑩慮戠潐污楣捩?湩散琠睨潹牤歲獯?楨湥??楡??當牥歮桴漠污摮敤爠楰慥?硡敧湩潣瘠潥牮慶湩獲??業?????おそ嬮?嵆???瀠灍汩楣敲摯?慩湯摬??湹瘠楅牣潯湬浯敧湹琬愠氲‰?椰挬爠漳戲椨漳氩漺朠礲??木???????????????ㄠ????う?扮牧?孊??崠?卡捯栠??水???桩氠教?????敵猠捒桌攬爠?????敌椬氠?啩??做愮甠氼?????慯桭湯????匯捩栾?愼畩派汰?来杺敯牴?????畮捳格猯?????攮渠穮潯慶琮攬?捡漠敭湵穬祴浩数???汳楴杲慥獳敳?晴牯潬浥??楮?吠桢慡畣整牥慲?慵牭漠浩慳瑯楬捡慴??椠???慭渠?攠湤穥祥浰攭?慥捡琠楳湥杤?業湥?慴渠慳敡牭潰扬楥挠?慦渠摴?慥攠牎潥扷椠捂?灩慴瑡桩睮愠祔獲孥?嵣???潝甮爠湉慮汴?潲普??慩捯瑮敡牬椠潊汯潵杲祮??㈠はて?????????????????????tionary Microbiology, 2020, 70(4): 2560-2568
    [27] Harwood CS, Parales RE. The beta-ketoadipate pathway and the biology of self-identity[J]. Annual Review of Microbiology, 1996, 50: 553-590
    [28] Bertani I, Kojic M, Venturi V. Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358[J]. Microbiology: Reading, England, 2001, 147(Pt 6): 1611-1620
    [29] Cui GJ, Li J, Gao ZM, Wang Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep[J]. PeerJ, 2019, 7: e6961
    [30] van Gorcom RF, Boschloo JG, Kuijvenhoven A, Lange J, van Vark AJ, Bos CJ, van Balken JA, Pouwels PH, van den Hondel CA. Isolation and molecular characterisation of the benzoate-para-hydroxylase gene (bphA) of Aspergillus niger: a member of a new gene family of the cytochrome P450 superfamily[J]. Molecular & General Genetics: MGG, 1990, 223(2): 192-197
    [31] Zhao H, Xu Y, Lin SJ, Spain JC, Zhou NY. The molecular basis for the intramolecular migration (NIH shift
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赖鑫婷,凌浩,周宁一,许楹. 深渊沉积物中盐单胞菌(Halomonas sp.)NyZ771菌株的分离培养及其降解芳香酸的研究[J]. 微生物学通报, 2022, 49(5): 1553-1562

复制
分享
文章指标
  • 点击次数:494
  • 下载次数: 945
  • HTML阅读次数: 1647
  • 引用次数: 0
历史
  • 收稿日期:2022-02-14
  • 录用日期:2022-03-06
  • 在线发布日期: 2022-05-05
文章二维码