科微学术

微生物学通报

鼠伤寒沙门氏菌baeR过表达株的构建及其耐药性
作者:
基金项目:

安徽农业大学研究生创新基金(2020ysj-24);国家自然科学基金面上项目(31772802)


Construction and antibiotic resistance of a Salmonella typhimurium strain overexpressing baeR
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】鼠伤寒沙门氏菌(Salmonella typhimurium)是一种重要的人兽共患病原菌,其多重耐药性问题日益严重,双组分系统可调控鼠伤寒沙门氏菌的耐药性。【目的】通过构建鼠伤寒沙门氏菌baeR过表达株及回补株探究BaeSR双组分系统对鼠伤寒沙门氏菌耐药性的影响。【方法】在BaeSR双组分系统和AcrB外排泵双缺失株(CRΔbaeSRΔacrB)的基础上构建baeR过表达株(CRpbaeRΔbaeSRΔacrB)及baeR回补株(CRcbaeRΔbaeSRΔacrB),测定双缺失株、回补株和过表达株的最小抑菌浓度(minimum inhibitory concentration,MIC),并对其生长特性、生物膜形成能力及运动性进行分析。采用转录组学技术筛选与耐药相关的差异表达基因,RT-qPCR验证耐药相关基因。【结果】构建了鼠伤寒沙门氏菌baeR过表达株和baeR回补株。与双缺失株相比,过表达株对氧氟沙星、恩诺沙星、氟苯尼考、乙酰甲喹、头孢他啶、头孢噻呋、阿莫西林和氨苄西林的MIC分别升高2–256倍,对大观霉素、安普霉素的MIC下降了50%;与双缺失株相比,回补株对头孢他啶、头孢噻呋、氟苯尼考、恩诺沙星的MIC分别升高了2倍;与双缺失株相比,过表达株和回补株的生长速率无明显变化,生物膜形成能力及运动能力极显著升高(P<0.01)。转录组学分析表明CRpbaeRΔbaeSRΔacrB/CRΔbaeSRΔacrB比较组共筛选到743个差异表达基因(上调724个,下调 19个),差异表达基因主要富集在β-内酰胺抗性、群体感应系统和双组分系统等通路中;CRcbaeRΔbaeSRΔacrB/CRΔbaeSRΔacrB比较组共筛选到3 073个差异表达基因(上调1 467个,下调1 606个),差异表达基因主要富集在碳代谢、氨基酸的生物合成和抗生素的生物合成等通路中。筛选出15个外排泵、鞭毛、生物膜、双组分系统及外膜蛋白等耐药相关差异表达基因,随机选取5个差异表达基因进行RT-qPCR验证,趋势与转录组一致。【结论】baeR过表达后通过调控生物膜形成及运动性从而介导鼠伤寒沙门氏菌对多种药物的耐药性。转录组学测序结果显示,15个耐药相关基因显著差异表达,表明baeR过表达后可通过调节外排泵、生物膜和鞭毛等相关基因的表达影响鼠伤寒沙门氏菌的耐药性。

    Abstract:

    [Background] Salmonella typhimurium is a major zoonotic pathogen, and its multi-drug resistance is becoming increasingly serious. The two-component system can regulate the resistance of S. typhimurium. [Objective] We constructed the baeR-overexpressing strain and complementary strain of S. typhimurium to study the effect of BaeSR on the antibiotic resistance of S. typhimurium. [Methods] a complementary strain (CRcbaeRbaeSRacrB) and an overexpression strain (CRpbaeRbaeSRacrB) were constructed based on a baeSR and acrB double-deletion strain of S. typhimurium (CR∆baeSRacrB), and their antimicrobial susceptibility and biological characteristics were tested. RNA-Seq was used to screen the differentially expressed genes (DEGs) related to drug resistance, and RT-qPCR was conducted to verify some drug-related genes. [Results] The baeR-overexpressing strain and complementary strain were successfully constructed. Compared with that in CR∆baeSRacrB, the minimum inhibitory concentrations (MICs) of ofloxacin, enrofloxacin, florfenicol, mequindox, ceftazidime, ceftiofur, amoxicillin, and ampicillin increased by 2-256 folds while that of spectinomycin and apramycin decreased by 50% in CRpbaeRbaeSRacrB. The MIC of ceftazidime, ceftiofur, florfenicol, and enrofloxacin was two-fold higher in CRcbaeRbaeSRacrB than in CR∆baeSRacrB. The growth curves of CR∆baeSRacrB, CRpbaeRbaeSRacrB, and CRcbaeRbaeSRacrB showed no significant difference. However, the biofilm-forming ability and motility of CRpbaeRbaeSRacrB and CRcbaeRbaeSRacrB were significantly higher than those of CR∆baeSRacrB (P<0.01). A total of 743 DEGs were identified between CRpbaeRbaeSRacrB and CR∆baeSRacrB, including 724 upregulated genes and 19 downregulated genes. Bioinformatics analysis showed that the DEGs were mainly enriched in pathways such as β-lactam resistance, quorum sensing, and two-component system. A total of 3 073 DEGs were identified between CRcbaeRbaeSRacrB and CR∆baeSRacrB, including 1 467 upregulated genes and 1 606 downregulated genes. These DEGs were mainly enriched in pathways such as carbon metabolism, biosynthesis of amino acids, and biosynthesis of antibiotics. A total of 15 drug resistance-related DEGs were screened out, mainly involving efflux pump, biofilm, and two-component system. Five out of the 15 DEGs were randomly selected for RT-qPCR, which showed consistent results and confirmed the reliability of RNA-Seq results. [Conclusion] This study indicates that baeR affects the drug resistance of S. typhimurium by regulating its biofilm-forming ability and motility. RNA-Seq screened out 15 resistance-related DEGs, indicating that baeR overexpression can affect the drug resistance of S. typhimurium by regulating the expression of the genes associated with efflux pump, biofilm and flagella.

    参考文献
    [1] Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional regulation of the multiple resistance mechanisms in Salmonella: a review[J]. Pathogens, 2021, 10(7): 801
    [2] Tiwari S, Jamal SB, Hassan SS, Carvalho PVSD, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview[J]. Frontiers in Microbiology, 2017, 8: 1878
    [3] Raffa RG, Raivio TL. A third envelope stress signal transduction pathway in Escherichia coli[J]. Molecular Microbiology, 2002, 45(6): 1599-1611
    [4] Lin MF, Lin YY, Yeh HW, Lan CY. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility[J]. BMC Microbiology, 2014, 14: 119
    [5] Leblanc SKD, Oates CW, Raivio TL. Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli[J]. Journal of Bacteriology, 2011, 193(13): 3367-3375
    [6] Nishino K, Honda T, Yamaguchi A. Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system[J]. Journal of Bacteriology, 2005, 187(5): 1763-1772
    [7] Wang SY, You CB, Memon FQ, Zhang GY, Sun YW, Si HB. BaeR participates in cephalosporins susceptibility by regulating the expression level of outer membrane proteins in Escherichia coli[J]. The Journal of Biochemistry, 2021, 169(1): 101-108
    [8] Lin MF, Lin YY, Lan CY. The role of the two-component system BaeSR in disposing chemicals through regulating transporter systems in Acinetobacter baumannii[J]. PLoS One, 2015, 10(7): e0132843
    [9] Salehi B, Ghalavand Z, Yadegar A, Eslami G. Characteristics and diversity of mutations in regulatory genes of resistance-nodulation-cell division efflux pumps in association with drug-resistant clinical isolates of Acinetobacter baumannii[J]. Antimicrobial Resistance and Infection Control, 2021, 10(1): 53
    [10] Hu WS, Chen HW, Zhang RY, Huang CY, Shen CF. The expression levels of outer membrane proteins STM1530 and OmpD, which are influenced by the CpxAR and BaeSR two-component systems, play important roles in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3829-3837
    [11] 王文静. 双组分系统BaeSR对鼠伤寒沙门氏菌耐药性的影响[D]. 合肥: 安徽农业大学硕士学位论文, 2019 Wang WJ. Effects of the two-component system BaeSR on the antibiotic resistance of Salmonella typhimurium[D]. Hefei: Master’s Thesis of Anhui Agricultural University, 2019 (in Chinese)
    [12] 徐军. 双组分系统BaeSR和外排泵AcrB调控鼠伤寒沙门氏菌耐药性的研究[D]. 合肥: 安徽农业大学硕士学位论文, 2020 Xu J. Study on the resistance regulation of the two-component system BaeSR and efflux pump AcrB to Salmonella typhimurium[D]. Hefei: Master’s Thesis of Anhui Agricultural University, 2020 (in Chinese)
    [13] Chakroun I, Mahdhi A, Morcillo P, Cordero H, Cuesta A, Bakhrouf A, Mahdouani K, Esteban MÁ. Motility, biofilm formation, apoptotic effect and virulence gene expression of atypical Salmonella Typhimurium outside and inside Caco-2 cells[J]. Microbial Pathogenesis, 2018, 114: 153-162
    [14] Pletzer D, Stahl A, Oja AE, Weingart H. Role of the cell envelope stress regulators BaeR and CpxR in control of RND-type multidrug efflux pumps and transcriptional cross talk with exopolysaccharide synthesis in Erwinia amylovora[J]. Archives of Microbiology, 2015, 197(6): 761-772
    [15] Guerrero P, Collao B, Álvarez R, Salinas H, Morales EH, Calderón IL, Saavedra CP, Gil F. Salmonella enterica serovar Typhimurium BaeSR two-component system positively regulates sodA in response to ciprofloxacin[J]. Microbiology, 2013, 159(Pt_10): 2049-2057
    [16] Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium[J]. Journal of Bacteriology, 2007, 189(24): 9066-9075
    [17] Wang D, Fierke CA. The BaeSR regulon is involved in defense against zinc toxicity in E. coli[J]. Metallomics, 2013, 5(4): 372-383
    [18] 孙长龙, 吴思, 张倩楠, 马信, 齐笑萱, 张阳. 基于群体感应调控细菌生物膜形成研究进展[J]. 山东化工, 2021, 50(2): 89-91 Sun CL, Wu S, Zhang QN, Ma X, Qi XX, Zhang Y. Advances in the regulation of bacterial biofilm formation based on quorum Sensing[J]. Shandong Chemical Industry, 2021, 50(2): 89-91 (in Chinese)
    [19] Ashrafudoulla M, Mizan MFR, Ha AJW, Park SH, Ha SD. Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus[J]. Food Microbiology, 2020, 91: 103500
    [20] Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: a current review[J]. Frontiers in Chemistry, 2019, 7: 824
    [21] Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. Genetic control of bacterial biofilms[J]. Journal of Applied Genetics, 2016, 57(2): 225-238
    [22] Schuhmacher JS, Thormann KM, Bange G. How bacteria maintain location and number of flagella?[J]. FEMS Microbiology Reviews, 2015, 39(6): 812-822
    [23] Cheng CY, Wang H, Ma TT, Han X, Yang YC, Sun J, Chen ZW, Yu HF, Hang Y, Liu FD, et al. Flagellar basal body structural proteins FlhB, FliM, and FliY are required for flagellar-associated protein expression in Listeria monocytogenes[J]. Frontiers in Microbiology, 2018, 9: 208
    [24] Li YL, Xia HM, Bai F, Song XY, Zhuang LN, Xu HJ, Zhang XM, Zhang XM, Qiao MQ. PA5001 gene involves in swimming motility and biofilm formation in Pseudomonas aeruginosa[J]. Microbial Pathogenesis, 2020, 144: 103982
    [25] Choi U, Lee CR. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli[J]. Frontiers in Microbiology, 2019, 10: 953
    [26] 吴丽娜, 董鹏程, 张一敏, 毛衍伟, 梁荣蓉, 杨啸吟, 朱立贤, 罗欣. 大肠杆菌O157:H7在不锈钢表面生物膜形成能力及其与菌株的特性关系[J]. 食品科学, 2020, 41(22): 127-132 Wu LN, Dong PC, Zhang YM, Mao YW, Liang RR, Yang XY, Zhu LX, Luo X. Biofilm formation ability of Escherichia coli O157:H7 on stainless steel surface and its relationship with bacterial characteristics[J]. Food Science, 2020, 41(22): 127-132 (in Chinese)
    [27] Wang FY, Deng L, Huang FF, Wang ZF, Lu QJ, Xu CR. Flagellar motility is critical for Salmonella enterica serovar typhimurium biofilm development[J]. Frontiers in Microbiology, 2020, 11: 1695
    [28] Schachterle JK, Stewart RM, Schachterle MB, Calder JT, Kang H, Prince JT, Erickson DL. Yersinia pseudotuberculosis BarA-UvrY two-component regulatory system represses biofilms via CsrB[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 323
    [29] 陈妍妍. 溶藻弧菌定植因子AcfA的功能及其对SODFlgDct的调控[D]. 湛江: 广东海洋大学博士学位论文, 2019 Chen YY. Study on the function and regulation of accessory colonization factor AcfA of Vibrio alginolyticus to SOD, Flg and Dct[D]. Zhanjiang: Doctoral Dissertation of Guangdong Ocean University, 2019 (in Chinese)
    [30] Cheung CHP, Dulyayangkul P, Heesom KJ, Avison MB. Proteomic investigation of the signal transduction pathways controlling colistin resistance in Klebsiella pneumoniae[J]. bioRxiv, 2020. DOI: 10.1101/2020.05. 05.078428
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高海侠,卢芳,姜西迪,魏祺灵,漆彩丽,张临,付恒峰,李琳. 鼠伤寒沙门氏菌baeR过表达株的构建及其耐药性[J]. 微生物学通报, 2022, 49(2): 659-678

复制
分享
文章指标
  • 点击次数:389
  • 下载次数: 1118
  • HTML阅读次数: 1198
  • 引用次数: 0
历史
  • 收稿日期:2021-06-20
  • 最后修改日期:2021-08-10
  • 在线发布日期: 2022-02-21
文章二维码