科微学术

微生物学通报

海拔高度对青藏高原放牧牦牛肠道菌群多样性的影响
作者:
基金项目:

国家自然科学基金(31960642,81760633)


Effect of altitude on the diversity of gut microbiota of yaks grazing on the Qinghai-Tibet Plateau
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】肠道菌群与宿主健康及环境适应性密切相关,牦牛为青藏高原特有的草食性反刍动物,不同海拔高度如何影响牦牛肠道菌群组成及肠道菌群在牦牛适应高海拔生境中的作用尚不清楚。【目的】探究青藏高原放牧牦牛肠道菌群多样性及其与海拔高度间的关系。【方法】采集青海省玛沁县(海拔4 220 m)和乐都县(2 745 m) 2个海拔高度放牧牦牛的22份新鲜粪便样品,然后利用16S rRNA基因通用引物扩增V3-V4区并进行高通量测序和分析。【结果】从22份样品中共获得1 723 018条有效序列,通过聚类共获得1 113个操作分类单元(operational taxonomic unit,OTU),注释到22个门和263个属。在门和属分类水平上,2组样品中的优势菌为厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、瘤胃菌科UCG-005菌属(Ruminococcaceae_UCG-005)和理研菌科RC9菌属(Rikenellaceae_RC9_gut_group),但是其相对丰度在2组样品中差异显著。随着海拔升高,厚壁菌门和瘤胃菌科UCG-005菌属相对丰度显著提高,而拟杆菌门和理研菌科RC9菌属的相对丰度显著降低。对不同样品菌群组成和差异分析表明,放牧牦牛的肠道微生物群落组成受不同海拔环境的影响较大。此外,通过PICRUSt2功能预测分析表明,随着海拔升高,能量代谢、辅因子代谢、维生素代谢、核苷酸代谢、多糖代谢和氨基酸代谢等相关代谢通路显著富集,这可能与牦牛通过提高牧草利用效率并获取更多能量以适应极端高海拔环境有关。【结论】不同海拔环境放牧牦牛的肠道菌群组成具有明显的差异,并且肠道菌群对于牦牛适应高海拔生境具有重要功能。

    Abstract:

    [Background] Gut microbiota is closely related to the health and environmental adaptability of the host. Yak (Bos grunniens) is a herbivorous ruminant unique to the Qinghai-Tibet Plateau. The effect of altitude on the gut microbiota structure of yaks and the roles of gut microbiota in the adaption of yaks to high altitude, however, are still largely elusive. [Objective] This paper aims to explore the diversity of gut microbiota of yaks grazing on the Qinghai-Tibet Plateau and the relationship with altitude. [Methods] A total of 22 fresh fecal samples were collected from yaks in Maqin (altitude:4 220 m) and Ledu (altitude:2 745 m) of Qinghai, and the V3-V4 region of 16S rRNA gene was amplified with universal primers and then subjected to high-throughput sequencing and analysis. [Results] A total of 1 723 018 valid reads were obtained from the 22 samples, which were clustered into 1 113 operational taxonomic units (OTUs) based on 97% similarity. The OTUs belonged to 263 genera and 22 phyla. Firmicutes, Bacteroidetes, Ruminococcaceae_UCG-005, and Rikenellaceae_RC9_gut_group dominated the samples from the two regions, despite the significant difference in abundance. As the altitude elevated, the abundance of Firmicutes and Ruminococcaceae_UCG-005 significantly increased, while that of Bacteroidetes and Rikenellaceae_RC9_gut_group significantly decreased. As for the structure and difference of gut microbiota, gut microbiota structure of yaks was dramatically affected by altitude. In addition, PICRUSt2 analysis revealed that related metabolic pathways in gut microbiota such as energy metabolism, cofactor and vitamin metabolism, nucleotide metabolism, and glycan and amino acid metabolism were significantly enriched in yaks grazing at the higher altitude, in part because yaks improved forage utilization efficiency and harvested more energy to adapt to the extreme environment at higher altitude.[Conclusion] The gut microbiota structure of yak grazing at different altitudes was obviously different, and gut microbiota was proposed to play an essential role in the adaption of yaks to the environment at high altitude.

    参考文献
    [1] Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920
    [2] Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4): 837-848
    [3] Ma Y, Ma S, Chang L, Wang HJ, Ga Q, Ma L, Bai ZZ, Shen YY, Ge RL. Gut microbiota adaptation to high altitude in indigenous animals[J]. Biochemical and Biophysical Research Communications, 2019, 516(1): 120-126
    [4] 孙国雷. 基于16S rRNA基因的喜马拉雅塔尔羊、岩羊和欧洲盘羊的肠道微生态研究[D]. 曲阜: 曲阜师范大学硕士学位论文, 2017 Sun GL. Study on the gut microbiota of Himalayan thar, Mouflon and Bharal based on 16S rRNA gene sequencing[D]. Qufu: Master’s Thesis of Qufu Normal University, 2017 (in Chinese)
    [5] Zeng B, Zhang SY, Xu HL, Kong FL, Yu XQ, Wang P, Yang MY, Li DY, Zhang MW, Ni QY, et al. Gut microbiota of Tibetans and Tibetan pigs varies between high and low altitude environments[J]. Microbiological Research, 2020, 235: 126447
    [6] 黄彩霞, 高媛, 孙宝忠, 卢凌. 牦牛品种品质研究进展[J]. 肉类研究, 2012, 26(9): 30-34 Huang CX, Gao Y, Sun BZ, Lu L. Research progress in meat quality of different yak breeds[J]. Meat Research, 2012, 26(9): 30-34 (in Chinese)
    [7] Huang XD, Tan HY, Long RJ, Liang JB, Wright ADG. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan Plateau, China[J]. BMC Microbiology, 2012, 12(1): 237
    [8] Guo N, Wu QF, Shi FY, Niu JH, Zhang T, Degen AA, Fang QG, Ding LM, Shang ZH, Zhang ZG, et al. Seasonal dynamics of diet–gut microbiota interaction in adaptation of yaks to life at high altitude[J]. Npj Biofilms and Microbiomes, 2021, 7: 38
    [9] Liu WW, Wang Q, Song JJ, Xin JW, Zhang SS, Lei YH, Yang YL, Xie P, Suo HY. Comparison of gut microbiota of yaks from different geographical regions[J]. Frontiers in Microbiology, 2021, 12: 666940
    [10] Zhang XL, Xu TW, Wang XG, Geng YY, Liu HJ, Hu LY, Zhao N, Kang SP, Zhang WM, Xu SX. The effect of transitioning between feeding methods on the gut microbiota dynamics of yaks on the Qinghai-Tibet plateau[J]. Animals, 2020, 10(9): 1641
    [11] 米见对. 细菌与甲烷菌在牦牛瘤胃中的时间动态及其在消化道的空间分布[D]. 兰州: 兰州大学博士学位论文, 2016 Mi JD. Dynamics in rumen and distribution along gastrointestinal tracts of bacteria and methanogen in yak[D]. Lanzhou: Doctoral Dissertation of Lanzhou University, 2016 (in Chinese)
    [12] Nie YY, Zhou ZW, Guan JQ, Xia BX, Luo XL, Yang Y, Fu Y, Sun Q. Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics[J]. Asian Australasian Journal of Animal Sciences, 2017, 30(7): 957-966
    [13] Xin JW, Chai ZX, Zhang CF, Zhang Q, Zhu Y, Cao HW, Zhong JC, Ji QM. Comparing the microbial community in four stomach of dairy cattle, yellow cattle and three yak herds in Qinghai-Tibetan Plateau[J]. Frontiers in Microbiology, 2019, 10: 1547
    [14] Wu DW, Vinitchaikul P, Deng MY, Zhang GR, Sun LY, Wang HX, Gou X, Mao HM, Yang SL. Exploration of the effects of altitude change on bacteria and fungi in the rumen of yak (Bos grunniens)[J]. Archives of Microbiology, 2021, 203(2): 835-846
    [15] Kataev VY, Sleptsov II, Martynov AA, Aduchiev BK, Khlopko YA, Miroshnikov SA, Cherkasov SV, Plotnikov AO. Data on rumen and faeces microbiota profiles of Yakutian and Kalmyk cattle revealed by high-throughput sequencing of 16S rRNA gene amplicons[J]. Data in Brief, 2020, 33: 106407
    [16] 王云洲, 陈凤梅, 张万明, 郭建强, 马朝银, 胡士林. 应用高通量测序技术分析青海牦牛引进山东后瘤胃菌群的变化[J]. 中国畜牧兽医, 2020, 47(7): 2013-2024 Wang YZ, Chen FM, Zhang WM, Guo JQ, Ma CY, Hu SL. High throughput sequencing analyzed changes in the yak rumen microflora after Qinghai yaks introduced to Shandong[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(7): 2013-2024 (in Chinese)
    [17] El-Meadaway A, Mir Z, Mir PS, Zaman MS, Yanke LJ. Relative efficacy of inocula from rumen fluid or faecal solution for determining in vitro digestibility and gas production[J]. Canadian Journal of Animal Science, 1998, 78(4): 673-679
    [18] 王继文, 王立志, 闫天海, 郭伟, 徐琴. 山羊瘤胃与粪便微生物多样性[J]. 动物营养学报, 2015, 27(8): 2559-2571 Wang JW, Wang LZ, Yan TH, Guo W, Xu Q. Diversity of ruminal and fecal microbiota of goat[J]. Chinese Journal of Animal Nutrition, 2015, 27(8): 2559-2571 (in Chinese)
    [19] Edgar RC. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461
    [20] Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1): 57-59
    [21] Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541
    [22] Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NFY, Zhou HW. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8264-8271
    [23] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): R60
    [24] Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. PICRUSt2: an improved and extensible approach for metagenome inference[J]. bioRxiv, 2019. DOI: 10.1101/672295
    [25] Li H, Zhou R, Zhu JX, Huang XD, Qu JP. Environmental filtering increases with elevation for the assembly of gut microbiota in wild pikas[J]. Microbial Biotechnology, 2019, 12(5): 976-992
    [26] Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, Lakhdari O, Lombard V, Henrissat B, Corthier G, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults[J]. Environmental Microbiology, 2015, 17(12): 4954-4964
    [27] Liu XX, Zhang YL, Li YF, Pan JF, Wang DD, Chen WH, Zheng ZQ, He XH, Zhao QJ, Pu YB, et al. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J]. Molecular Biology and Evolution, 2019, 36(11): 2591-2603
    [28] Liu JB, Yuan C, Guo TT, Wang F, Zeng YF, Ding XZ, Lu ZK, Renqing DK, Zhang H, Xu XL, et al. Genetic signatures of high-altitude adaptation and geographic distribution in Tibetan sheep[J]. Scientific Reports, 2020, 10: 18332
    [29] Ma YF, Han XM, Huang CP, Zhong L, Adeola AC, Irwin DM, Xie HB, Zhang YP. Population genomics analysis revealed origin and high-altitude adaptation of Tibetan pigs[J]. Scientific Reports, 2019, 9: 11463
    [30] Suzuki TA, Martins FM, Nachman MW. Altitudinal variation of the gut microbiota in wild house mice[J]. Molecular Ecology, 2019, 28(9): 2378-2390
    [31] Fan QS, Wanapat M, Yan TH, Hou FJ. Altitude influences microbial diversity and herbage fermentation in the rumen of yaks[J]. BMC Microbiology, 2020, 20(1): 370
    [32] Liu HJ, Zhao XQ, Han XP, Xu SX, Zhao L, Hu LY, Xu TW, Zhao N, Zhang XL, Chen DD, et al. Comparative study of gut microbiota in Tibetan wild asses (Equus kiang) and domestic donkeys (Equus asinus) on the Qinghai-Tibet plateau[J]. PeerJ, 2020. DOI: 10.7717/ peerj.9032
    [33] Wang YJ, Zhou R, Yu QL, Feng TS, Li H. Gut microbiome adaptation to extreme cold winter in wild plateau pika (Ochotona curzoniae) on the Qinghai-Tibet Plateau[J]. FEMS Microbiology Letters, 2020, 367(16): fnaa134
    [34] Kaakoush NO. Insights into the role of Erysipelotrichaceae in the human host[J]. Frontiers in Cellular and Infection Microbiology, 2015, 5: 84
    [35] Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U. Rumen microbial population dynamics during adaptation to a high-grain diet[J]. Applied and Environmental Microbiology, 2010, 76(22): 7482-7490
    [36] Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function[J]. Frontiers in Microbiology, 2014, 5: 223
    [37] Wu YH, Yao YF, Dong MM, Xia TR, Li DY, Xie M, Wu JY, Wen AX, Wang Q, Zhu GX, et al. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments[J]. BMC Microbiology, 2020, 20(1): 68
    [38] Wu DW, Vinitchaikul P, Deng MY, Zhang GR, Sun LY, Gou X, Mao HM, Yang SL. Host and altitude factors affect rumen bacteria in cattle[J]. Brazilian Journal of Microbiology, 2020, 51(4): 1573-1583
    [39] Zhao JS, Yao YF, Li DY, Xu HM, Wu JY, Wen AX, Xie M, Ni QY, Zhang MW, Peng GN, et al. Characterization of the gut microbiota in six geographical populations of Chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment[J]. Microbial Ecology, 2018, 76(2): 565-577
    [40] Sun GL, Zhang HH, Wei QG, Zhao C, Yang XF, Wu XY, Xia T, Liu GS, Zhang L, Gao Y, et al. Comparative analyses of fecal microbiota in European mouflon (Ovis orientalis musimon) and blue sheep (Pseudois nayaur) living at low or high altitudes[J]. Frontiers in Microbiology, 2019, 10: 1735
    [41] McLoughlin S, Spillane C, Claffey N, Smith PE, O’Rourke T, Diskin MG, Waters SM. Rumen microbiome composition is altered in sheep divergent in feed efficiency[J]. Frontiers in Microbiology, 2020, 11: 1981
    [42] Del Chierico F, Abbatini F, Russo A, Quagliariello A, Reddel S, Capoccia D, Caccamo R, Ginanni Corradini S, Nobili V, De Peppo F, et al. Gut microbiota markers in obese adolescent and adult patients: age-dependent differential patterns[J]. Frontiers in Microbiology, 2018, 9: 1210
    [43] Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family[J]. Microbiome, 2019, 7(1): 28
    [44] Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, et al. High-fat diet alters gut microbiota physiology in mice[J]. The ISME Journal, 2014, 8(2): 295-308
    [45] Derrien M, Belzer C, De Vos WM. Akkermansia muciniphila and its role in regulating host functions[J]. Microbial Pathogenesis, 2017, 106: 171-181
    [46] Cani PD, De Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila[J]. Frontiers in Microbiology, 2017, 8: 1765
    [47] Qin JJ, Li YR, Cai ZM, Li SH, Zhu JF, Zhang F, Liang SS, Zhang WW, Guan YL, Shen DQ, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418): 55-60
    [48] Perea K, Perz K, Olivo SK, Williams A, Lachman M, Ishaq SL, Thomson J, Yeoman CJ. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota[J]. Journal of Animal Science, 2017, 95(6): 2585-2592
    [49] Consortium THMP. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214
    [50] Mazel F. Living the high life: could gut microbiota matter for adaptation to high altitude?[J]. Molecular Ecology, 2019, 28(9): 2119-2121
    [51] Zhang ZG, Xu DM, Wang L, Hao JJ, Wang JF, Zhou X, Wang WW, Qiu Q, Huang XD, Zhou JW, et al. Convergent evolution of rumen microbiomes in high-altitude mammals[J]. Current Biology, 2016, 26(14): 1873-1879
    [52] 赵聪聪. 放牧条件下黄牛、犏牛和牦牛瘤胃液生理生化指标及微生物组成比较研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2019 Zhao CC. Analysis of physiological and biochemical indexes and microbial composition of rumen liquid of cattle, dzo and yak under grazing conditions[D]. Yangling: Master’s Thesis of Northwest A&F University, 2019 (in Chinese)
    [53] Hamana K, Itoh T, Sakamoto M, Hayashi H. Covalently linked polyamines in the cell wall peptidoglycan of the anaerobes belonging to the order Selenomonadales[J]. The Journal of General and Applied Microbiology, 2012, 58(4): 339-347
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马艳,向信,樊嘉凯,张本印. 海拔高度对青藏高原放牧牦牛肠道菌群多样性的影响[J]. 微生物学通报, 2022, 49(2): 620-634

复制
分享
文章指标
  • 点击次数:818
  • 下载次数: 1518
  • HTML阅读次数: 1642
  • 引用次数: 0
历史
  • 收稿日期:2021-08-17
  • 最后修改日期:2021-09-13
  • 在线发布日期: 2022-02-21
文章二维码