科微学术

微生物学通报

整合转录组数据鉴定大型真菌原基形成的潜在通路(英文)
作者:
基金项目:

福建省农业科学院自由探索项目(ZYTS2020013);福建省自然科学基金(2020J011378);福建省农业科学院创新团队项目(CXTD2021016-2);福建省种业创新与产业化工程项目(zycxny2021011);福建省公益类科研院所专项(2020R1035003,2020R1035005)


Identification of potential pathways in primordium formation of mushroom-forming fungi: based on the analysis of RNA-Seq data
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [59]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】大型真菌子实体发育特别是从菌丝体到原基转变的分子机制,目前仍不清楚。现有的研究大多集中在有限的真菌种类或环境因素上,但对在发育中起关键作用的基因提供的信息有限。【目的】研究大型真菌原基形成的分子机制。【方法】对11个物种及4个环境因子相关的转录组数据进行分析。【结果】与对照组相比,上调基因数量从白灵菇(Pleurotus tuoliensis)的325个到梅里克氏菌(Rickenella mellea)的2 854个,下调基因数量从白灵菇的379个到圆环蜜环菌(Armillaria ostoyae)的3 189个。根据gene ontology (GO)注释,前3个生物过程类别为氧化-还原过程、代谢过程和碳水化合物代谢过程。此外,细胞成分类别中膜整体成分、核、膜等显著富集。同样地,分子功能类别包括水解酶活性、氧化还原酶活性和催化活性。【结论】大型真菌在原基形成中存在可能发挥重要作用的共同通路。

    Abstract:

    [Background] The molecular mechanism of fruiting body development in mushroom-forming fungi, especially the transition from mycelium to primordium, is still unclear. Most of related studies focused on limited fungal species or environmental factors, and offered little information on the key genes in the development of mushroom-forming fungi. [Objective] This paper aims to study the molecular mechanism for primordium formation of mushroom-forming fungi. [Methods] RNA-seq data of 11 fungal species and 4 related environmental factors were analyzed. [Results] The number of up-regulated genes ranged from 325 (Pleurotus tuoliensis) to 2 854 (Rickenella mellea), while that of down-regulated genes was in the range of 379 (Pleurotus tuoliensis) to 3 189 (Armillaria ostoyae) compared with that of the control. As for the gene ontology (GO) terms, the top three biological processes were oxidation-reduction process, metabolic process and carbohydrate metabolic process. The mainly involved cellular components were the integral component of membrane, nucleus, and membrane, and the related molecular functions were hydrolase activity, oxidoreductase activity and catalytic activity. [Conclusion] There are some common key pathways for the primordium formation among mushroom-forming fungi.

    参考文献
    [1] Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists[J]. Nature Genetics, 2015, 47(4): 410-415
    [2] Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: a rich source of the antioxidants ergothioneine and glutathione[J]. Food Chemistry, 2017, 233: 429-433
    [3] Busch S, Braus GH. How to build a fungal fruit body: from uniform cells to specialized tissue[J]. Molecular Microbiology, 2007, 64(4): 873-876
    [4] Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS. 5'-serial analysis of gene expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea[J]. BMC Genomics, 2013, 14: 195
    [5] Fu YP, Dai YT, Yang CT, Wei P, Song B, Yang Y, Sun L, Zhang ZW, Li Y. Comparative transcriptome analysis identified candidate genes related to bailinggu mushroom formation and genetic markers for genetic analyses and breeding[J]. Scientific Reports, 2017, 7: 9266
    [6] Xie CL, Gong WB, Zhu ZH, Yan L, Hu ZX, Peng YD. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage[J]. Genomics, 2018, 110(3): 201-209
    [7] Wang YZ, Zeng XL, Liu WG. De novo transcriptomic analysis during Lentinula edodes fruiting body growth[J]. Gene, 2018, 641: 326-334
    [8] Ohm RA, Jong JFD, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, et al. Genome sequence of the model mushroom Schizophyllum commune[J]. Nature Biotechnology, 2010, 28(9): 957-963
    [9] Liu JY, Chang MC, Meng JL, Feng CP, Zhao H, Zhang ML. Comparative proteome reveals metabolic changes during the fruiting process in Flammulina velutipes[J]. Journal of Agricultural and Food Chemistry, 2017, 65(24): 5091-5100
    [10] Zhang G, Sun ZH, Ren A, Shi L, Shi DK, Li XB, Zhao MW. The mitogen-activated protein kinase GlSlt2 regulates fungal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in Ganoderma lucidum[J]. Fungal Genetics and Biology, 2017, 104: 6-15
    [11] Wang F, Song XH, Dong XM, Zhang JJ, Dong CH. DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris[J]. Applied Microbiology and Biotechnology, 2017, 101(11): 4645-4657
    [12] Zhang JJ, Ren A, Chen H, Zhao MW, Shi L, Chen MJ, Wang H, Feng ZY. Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus[J]. PLoS One, 2015, 10(4): e0123025
    [13] Zhang JJ, Chen H, Chen MJ, Ren A, Huang JC, Wang H, Zhao MW, Feng ZY. Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus[J]. Microbiological Research, 2015, 179: 54-63
    [14] Rahmad N, Al-Obaidi JR, Nor Rashid NM, Zean NB, Mohd Yusoff MHY, Shaharuddin NS, Mohd Jamil NA, Mohd Saleh N. Comparative proteomic analysis of different developmental stages of the edible mushroom Termitomyces heimii[J]. Biological Research, 2014, 47: 30
    [15] Plaza DF, Lin CW, Van Der Velden NSJ, Aebi M, Künzler M. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development[J]. BMC Genomics, 2014, 15: 492
    [16] Wang LN, Wu XL, Gao W, Zhao MR, Zhang JX, Huang CY. Differential expression patterns of Pleurotus ostreatus catalase genes during developmental stages and under heat stress[J]. Genes, 2017, 8(11): 335
    [17] Yang C, Ma L, Xiao DL, Ying ZH, Jiang XL, Lin YQ. Identification and evaluation of reference genes for qRT-PCR normalization in Sparassis latifolia (agaricomycetes)[J]. International Journal of Medicinal Mushrooms, 2019, 21(3): 301-309
    [18] Yang C, Ma L, Ying ZH, Jiang XL, Lin YQ. Sequence analysis and expression of a blue-light photoreceptor gene, slwc-1 from the cauliflower mushroom Sparassis latifolia[J]. Current Microbiology, 2017, 74(4): 469-475
    [19] 杨驰, 马璐, 肖冬来, 应正河, 江晓凌, 林衍铨. 广叶绣球菌DASH型隐花色素同源基因Slcry1的序列与表达分析[J]. 食用菌学报, 2018, 25(4): 9-16, 136 Yang C, Ma L, Xiao DL, Ying ZH, Jiang XL, Lin YQ. Analysis on sequence and expression of DASH-type cryptochrome homologous gene Slcry1 in Sparassis latifolia[J]. Acta Edulis Fungi, 2018, 25(4): 9-16, 136 (in Chinese)
    [20] Yoo SI, Lee HY, Markkandan K, Moon S, Ahn YJ, Ji SM, Ko J, Kim SJ, Ryu H, Hong CP. Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes[J]. BMC Genomics, 2019, 20(1): 1-13
    [21] Ma AM, Shan LJ, Wang NJ, Zheng LS, Chen LG, Xie BJ. Characterization of a Pleurotus ostreatus fruiting body-specific hydrophobin gene, Po.hyd[J]. Journal of Basic Microbiology, 2007, 47(4): 317-324
    [22] Chum WWY, Ng KTP, Shih RSM, Au CH, Kwan HS. Gene expression studies of the dikaryotic mycelium and primordium of Lentinula edodes by serial analysis of gene expression[J]. Mycological Research, 2008, 112(8): 950-964
    [23] Tao YX, Chen RL, Yan JJ, Long Y, Tong ZJ, Song HB, Xie BG. A hydrophobin gene, Hyd9, plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis[J]. Gene, 2019, 706: 84-90
    [24] Buser R, Lazar Z, Käser S, Künzler M, Aebi M. Identification, characterization, and biosynthesis of a novel N-glycan modification in the fruiting body of the basidiomycete Coprinopsis cinerea[J]. Journal of Biological Chemistry, 2010, 285(14): 10715-10723
    [25] Ohga S, Cho NS, Thurston CF, Wood DA. Transcriptional regulation of laccase and cellulase in relation to fruit body formation in the mycelium of Lentinula edodes on a sawdust-based substrate[J]. Mycoscience, 2000, 41(2): 149-153
    [26] Konno N, Sakamoto Y. An endo-β-1,6-glucanase involved in Lentinula edodes fruiting body autolysis[J]. Applied Microbiology and Biotechnology, 2011, 91(5): 1365-1373
    [27] Sakamoto Y, Watanabe H, Nagai M, Nakade K, Takahashi M, Sato T. Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence[J]. Plant Physiology, 2006, 141(2): 793-801
    [28] Kües U. Life history and developmental processes in the basidiomycete Coprinus cinereus[J]. Microbiology and Molecular Biology Reviews, 2000, 64(2): 316-353
    [29] Ohm RA, Jong JFD, De Bekker C, Wösten HAB, Lugones LG. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation[J]. Molecular Microbiology, 2011, 81(6): 1433-1445
    [30] Corrochano LM. Fungal photoreceptors: sensory molecules for fungal development and behaviour[J]. Photochemical & Photobiological Sciences, 2007, 6(7): 725-736
    [31] Yang T, Guo MM, Yang HJ, Guo SP, Dong CH. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris[J]. Applied Microbiology and Biotechnology, 2016, 100(2): 743-755
    [32] Krizsán K, Almási É, Merényi Z, Sahu N, Virágh M, Kószó T, Mondo S, Kiss B, Bálint B, Kües U, et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi[J]. PNAS, 2019, 116(15): 7409-7418
    [33] Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources[J]. BMC Bioinformatics, 2006, 7: 62
    [34] Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training[J]. Genome Research, 2008, 18(12): 1979-1990
    [35] Zaharia M, Bolosky WJ, Curtis K, Fox A, Sittler T. Faster and more accurate sequence alignment with SNAP[J]. 2011, 2011: 1-10
    [36] Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments[J]. Genome Biology, 2008, 9(1): 1-22
    [37] Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10
    [38] Andrews S. FastQC A quality control tool for high throughput sequence data[EB/OL]. 2014
    [39] Xiao DL, Ma L, Yang C, Ying ZH, Jiang XL, Lin YQ. De novo sequencing of a Sparassis latifolia genome and its associated comparative analyses[J]. The Canadian Journal of Infectious Diseases & Medical Microbiology, 2018, 2018: 1857170
    [40] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29(1): 15-21
    [41] Anders S, Pyl PT, Huber W. HTSeq — a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169
    [42] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550
    [43] Li X, Wang F, Liu Q, Li QP, Qian ZM, Zhang XL, Li K, Li WJ, Dong CH. Developmental transcriptomics of Chinese Cordyceps reveals gene regulatory network and expression profiles of sexual development-related genes[J]. BMC Genomics, 2019, 20(1): 337
    [44] Yang C, Ma L, Xiao DL, Ying ZH, Jiang XL, Lin YQ. Integration of ATAC-seq and RNA-seq identifies key genes in light-induced primordia formation of Sparassis latifolia[J]. International Journal of Molecular Sciences, 2019, 21(1): 185
    [45] Wu TH, Ye ZW, Guo LQ, Yang XQ, Lin JF. De novo transcriptome sequencing of Flammulina velutipes uncover candidate genes associated with cold-induced fruiting[J]. Journal of Basic Microbiology, 2018, 58(8): 698-703
    [46] Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora[J]. Molecular Microbiology, 2007, 64(4): 923-937
    [47] Pöggeler S, Nowrousian M, Teichert I, Beier A, Kück U. Fruiting-body development in ascomycetes[A]// Physiology and Genetics[M]. Cham: Springer International Publishing, 2018: 1-56
    [48] Tong XX, Zhang H, Wang F, Xue ZY, Cao J, Peng C, Guo JL. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Ophiocordyceps sinensis[J]. PeerJ, 2020, 8: e8379
    [49] Zhong X, Gu L, Wang HZ, Lian DH, Zheng YM, Zhou S, Zhou W, Gu JL, Zhang GR, Liu X. Profile of Ophiocordyceps sinensis transcriptome and differentially expressed genes in three different mycelia, sclerotium and fruiting body developmental stages[J]. Fungal Biology, 2018, 122(10): 943-951
    [50] Wang LN, Gao W, Wu XL, Zhao MR, Qu JB, Huang CY, Zhang JX. Genome-wide characterization and expression analyses of Pleurotus ostreatus MYB transcription factors during developmental stages and under heat stress based on de novo sequenced genome[J]. International Journal of Molecular Sciences, 2018, 19(7): 2052
    [51] Song HY, Kim DH, Kim JM. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes[J]. Scientific Reports, 2018, 8: 8983
    [52] Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi[J]. Fungal Biology Reviews, 2018, 32(4): 236-248
    [53] Rodenburg SYA, Terhem RB, Veloso J, Stassen JHM, van Kan JAL. Functional analysis of mating type genes and transcriptome analysis during fruiting body development of Botrytis cinerea[J]. mBio, 2018. DOI: 10.1128/mbio.01939-17
    [54] Feng K, Wang LY, Liao DJ, Lu XP, Hu DJ, Liang X, Zhao J, Mo ZY, Li SP. Potential molecular mechanisms for fruiting body formation of Cordyceps illustrated in the case of Cordyceps sinensis[J]. Mycology, 2017, 8(4): 231-258
    [55] Yu JJ, Yu MN, Nie YF, Sun WX, Yin XL, Zhao J, Wang YH, Ding H, Qi ZQ, Du Y, et al. Comparative transcriptome analysis of fruiting body and sporulating mycelia of Villosiclava virens reveals genes with putative functions in sexual reproduction[J]. Current Genetics, 2016, 62(3): 575-584
    [56] Xiang L, Li Y, Zhu YJ, Luo HM, Li CF, Xu XL, Sun C, Song JY, Shi LC, He L, et al. Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis[J]. Genomics, 2014, 103(1): 154-159
    [57] Lu YP, Liao JH, Guo ZJ, Cai ZX, Chen MY. Genome survey and transcriptome analysis on mycelia and primordia of Agaricus blazei[J]. BioMed Research International, 2020, 2020: 1824183
    [58] Sakamoto Y, Sato S, Ito M, Ando Y, Nakahori K, Muraguchi H. Blue light exposure and nutrient conditions influence the expression of genes involved in simultaneous hyphal knot formation in Coprinopsis cinerea[J]. Microbiological Research, 2018, 217: 81-90
    [59] Liu JY, Chang MC, Meng JL, Feng CP, Wang Y. A comparative proteome approach reveals metabolic changes associated with Flammulina velutipes mycelia in response to cold and light stress[J]. Journal of Agricultural and Food Chemistry, 2018, 66(14): 3716-3725
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨驰,马璐,肖冬来,江晓凌,刘晓瑜,应正河,林衍铨. 整合转录组数据鉴定大型真菌原基形成的潜在通路(英文)[J]. 微生物学通报, 2022, 49(2): 556-568

复制
分享
文章指标
  • 点击次数:446
  • 下载次数: 906
  • HTML阅读次数: 772
  • 引用次数: 0
历史
  • 收稿日期:2021-05-11
  • 最后修改日期:2021-07-21
  • 在线发布日期: 2022-02-21
文章二维码