科微学术

微生物学通报

荧光假单胞菌CLW17菌株pqqEGDH基因的功能
作者:
基金项目:

国家自然科学基金(31100471);山西省“1331工程”资助项目


Functional analysis of pqqE and GDH genes in Pseudomonas fluorescens CLW17 strain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】磷是植物生长所必需的大量元素,但绝大多数不能被植物吸收利用。然而溶磷微生物能够分泌有机酸来溶解土壤中难溶性磷,提高土壤中磷的利用率,促进植物生长,提高作物的产量和品质。【目的】探究高效解磷荧光假单胞菌CLW17菌株的pqqEGDH基因的生理学功能。【方法】利用生物在线软件对2个基因编码蛋白进行生物信息学分析。利用同源重组技术分别获得pqqEGDH基因缺失突变株(CLW17ΔpqqE,CLW17ΔGDH),并使用接合转移的方式获得回补菌株(ΔpqqE/pqqE,ΔGDH/GDH)。分别采用NBRIP培养基、钼锑抗比色法及高压液相色谱法(HPLC)对野生型、突变株及互补株的溶磷及产有机酸能力进行检测。【结果】pqqEGDH基因编码氨基酸数目分别为390和803,均无信号肽。pqqE无跨膜结构域,而GDH预测有5个跨膜结构域。pqqEGDH基因是CLW17菌株的溶磷相关基因,2个基因的缺失均使该菌株的溶磷能力显著下降,而回补株可以恢复溶磷能力。CLW17野生株能分泌多种有机酸,其中葡萄糖酸(gluconic acid,GA)含量最多,其次是乙酸;但敲除株产有机酸的能力明显降低,尤其是产GA能力与空白培养基对照相差甚微,而且无乙酸产生。【结论】pqqEGDH基因是CLW17溶磷能力发挥的关键基因,该菌株溶磷能力与产有机酸尤其是产GA和乙酸密切相关。本研究为进一步研究该菌株与南方红豆杉的互作和溶磷机制奠定了基础。

    Abstract:

    [Background] Phosphorus is a macronutrient for plant growth, but most of it cannot be absorbed by plants. Phosphate-solubilizing microorganism (PSM) can secrete organic acids to dissolve the insoluble soil phosphates, improve plant growth, crop yield and quality by increasing phosphorus utilization.[Objective] The research aims to study the physiological functions of pqqE and GDH genes in the Pseudomonas fluorescens CLW17 strain. [Methods] Bioinformatics analyses have been done for two gene encoding proteins using bioinformatics software. We obtain two deletion mutant strains (CLW17ΔpqqE and CLW17ΔGDH) of pqqE and GDH gene by homologous recombination technology, and the corresponding supplementary strains (ΔpqqE/pqqE and ΔGDH/GDH) were obtained using the combined transfer method. The phosphate solubilizing abilities and organic acid production abilities of wild-type, mutant strains, and complementary strains were detected by NBRIP medium, molybdenum anti colorimetry method, and high-pressure liquid chromatography (HPLC) method, respectively. [Results] The numbers of amino acids encoded by pqqE and GDH genes were 390 and 803, respectively. There is no signal peptide for both genes. pqqE had no transmembrane domain, while GDH predicted five transmembrane domains. The pqqE and GDH genes are the phosphate-solubilizing genes of the CLW17 strain, and the deletion of the two genes greatly reduces the phosphate-solubilizing ability of this strain, moreover, the complementary strains of these two genes can restore the phosphate-solubilizing ability. Wild strain CLW17 can secrete a variety of organic acids, among which gluconic acid content is the highest, followed by acetic acid. The ability to produce organic acids in the knocked-out strain was greatly reduced, especially the ability to produce gluconic acid and acetic acid. [Conclusion] The pqqE and GDH genes are the key genes for the phosphate solubilization of the CLW17 strain, the phosphate solubilization ability of the strain is closely related to the production of organic acids, especially gluconic acid and acetic acid. This study laid the foundation for further study on the interaction and phosphorus solubilization mechanism between the strain and Taxus chinensis var. mairei.

    参考文献
    [1] Khan MS, Zaidi A, Wani PA. Role of phosphate- solubilizing microorganisms in sustainable agriculture: a review[J]. Agronomy for Sustainable Development, 2007, 27(1): 29-43
    [2] Rawat P, Das S, Shankhdhar D, Shankhdhar SC. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 49-68
    [3] Lin TF, Huang HI, Shen FT, Young CC. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74[J]. Bioresource Technology, 2006, 97(7): 957-960
    [4] Mi Z, Sun Z, Huang Z, Zhao P, Li Q, Tian P. Engineering CRISPR interference system to enhance the production of pyrroloquinoline quinone in Klebsiella pneumonia[J]. Letters in Applied Microbiology, 2020, 71(3): 242-250
    [5] Boiardi J, Galar ML, Neijssel OM. PQQ-linked extracellular glucose oxidation and chemotaxis towards this cofactor in rhizobia[J]. FEMS Microbiology Letters, 1996, 140(2/3): 179-184
    [6] Bhanja E, Das R, Begum Y, Mondal SK. Study of pyrroloquinoline quinine from phosphate-solubilizing microbes responsible for plant growth: in silico approach[J]. Frontiers in Agronomy, 2021, 3: 667339
    [7] Magnusson OT, RoseFigura JM, Toyama H, Schwarzenbacher R, Klinman JP. Pyrroloquinoline quinone biogenesis:  characterization of PqqC and its H84N and H84A active site variants[J]. Biochemistry, 2007, 46(24): 7174-7186
    [8] Yang XP, Zhong GF, Lin JP, Mao DB, Wei DZ. Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster[J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(6): 575-580
    [9] Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I. Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16[J]. Plant Physiology, 2008, 146(2): 323-324
    [10] Han SH, Kim CH, Lee JH, Park JY, Cho SM, Park SK, Kim KY, Krishnan HB, Kim YC. Inactivation of pqq genes of Enterobacter intermedium 60-2G reduces antifungal activity and induction of systemic resistance[J]. FEMS Microbiology Letters, 2008, 282(1): 140-146
    [11] 任嘉红, 刘辉, 吴晓蕙, 王青, 任英瑜, 刘亚静, 冯玉龙. 南方红豆杉根际溶无机磷细菌的筛选、鉴定及其促生效果[J]. 微生物学报, 2012, 52(3): 295-303 Ren JH, Liu H, Wu XH, Wang Q, Ren YY, Liu YJ, Feng YL. Screening, identification, and promoting effect of phosphate-solubilizing bacteria in rhizosphere of Taxus chinensis var. mairei[J]. Acta Microbiologica Sinica, 2012, 52(3): 295-303 (in Chinese)
    [12] Mehta S, Nautiyal CS. An efficient method for qualitative screening of phosphate-solubilizing bacteria[J]. Current Microbiology, 2001, 43(1): 51-56
    [13] Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PLoS One, 2018, 13(9): e0204408
    [14] Zhao K, Penttinen P, Zhang XP, Ao XL, Liu MK, Yu XM, Chen Q. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities[J]. Microbiological Research, 2014, 169(1): 76-82
    [15] Cunningham JE, Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii[J]. Applied and Environmental Microbiology, 1992, 58(5): 1451-1458
    [16] Kumar A, Kumar A, Patel H. Role of microbes in phosphorus availability and acquisition by plants[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(5): 1344-1347
    [17] Pande A, Pandey P, Mehra S, Singh M, Kaushik S. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize[J]. Journal of Genetic Engineering and Biotechnology, 2017, 15(2): 379-391
    [18] Valverde A, Delvasto P, Peix A, Velázquez E, Santa-Regina I, Ballester A, Rodríguez-Barrueco C, García-Balboa C, Igual JM. Burkholderia ferrariae sp. nov., isolated from an iron ore in Brazil[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(10): 2421-2425
    [19] Zeng QW, Wu XQ, Wang JC, Ding XL. Phosphate solubilization and gene expression of phosphate- solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate[J]. Journal of Microbiology and Biotechnology, 2017, 27(4): 844-855
    [20] Chen WM, Yang F, Zhang L, Wang JM. Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources[J]. Geomicrobiology Journal, 2016, 33(10): 870-877
    [21] 冯月红, 姚拓, 龙瑞军. 土壤解磷菌研究进展[J]. 草原与草坪, 2003, 23(1): 3-7 Feng YH, Yao T, Long RJ. Research progress of phosphate-dissolving microorganisms in plant rhizosphere[J]. Grassland and Turf, 2003, 23(1): 3-7 (in Chinese)
    [22] Bharwad K, Rajkumar S. Modulation of PQQ-dependent glucose dehydrogenase (mGDH and sGDH) activity by succinate in phosphate solubilizing plant growth promoting Acinetobacter sp. SK2[J]. 3 Biotech, 2019, 10(1): 1-11
    [23] Goldstein AH, Liu ST. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola[J]. Nature Biotechnology, 1987, 5(1): 72-74
    [24] Tripura C, Sudhakar Reddy P, Reddy MK, Sashidhar B, Podile AR. Glucose dehydrogenase of a rhizobacterial strain of Enterobacter asburiae involved in mineral phosphate solubilization shares properties and sequence homology with other members of Enterobacteriaceae[J]. Indian Journal of Microbiology, 2007, 47(2): 126-131
    [25] Bai BX, Yang X, Zhao QS, Liu RX, Ren JH. Inoculations with Pseudomonas fluorescens and Bacillus cereus affect the soil enzyme activity, growth and rhizosphere microbial diversity of Taxus chinensis var. mairei[J]. Plant and Soil, 2020, 455(1/2): 41-52
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘艳,曹永清,孟静,晋婷婷,任嘉红. 荧光假单胞菌CLW17菌株pqqEGDH基因的功能[J]. 微生物学通报, 2022, 49(2): 529-544

复制
分享
文章指标
  • 点击次数:490
  • 下载次数: 1059
  • HTML阅读次数: 938
  • 引用次数: 0
历史
  • 收稿日期:2021-08-05
  • 最后修改日期:2021-09-13
  • 在线发布日期: 2022-02-21
文章二维码