科微学术

微生物学通报

紫菜腐霉激发子基因家族特征及其在感染过程中的作用
作者:
基金项目:

中央高校基本科研业务费专项基金(202064006);农业农村部全国农业科研杰出人才及其创新团队项目


Characteristics of elicitin gene family of Pythium porphyrae and its role in infection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 激发子(elicitin)是卵菌(Oomycetes)疫霉和腐霉分泌的可诱发宿主产生免疫反应的小分子化合物。[目的] 鉴定紫菜腐霉激发子基因家族,分析其结构特征和在感染宿主过程中可能的作用机制。[方法] 运用同源比对法筛查紫菜腐霉NBRC33253基因组中激发子基因家族成员,利用生物信息学工具分析激发子家族的理化性质和系统进化,并结合转录组数据和GO功能注释,探讨其在感染宿主过程中可能的作用机制。[结果] 紫菜腐霉基因组中发现22个激发子基因家族成员,其中,17个为胞外分泌蛋白,4个定位于质膜,1个锚定于高尔基体。紫菜腐霉激发子基因结构简单保守,含有1-2个CDS序列,每个成员基因编码的氨基酸数目介于114-2 100 aa之间,等电点PI在3.61-9.88之间;系统进化分析显示,紫菜腐霉激发子家族成员存在扩张;表达模式分析说明,紫菜腐霉激发子在感染宿主后6个激发子基因表达量上调,7个激发子基因表达量下调,推测可能具有多个生物学功能,如GO功能注释到纤维素结合激发子凝集素(cellulose binding elicitor lectin,CBEL)和共生体对宿主防御相关程序性细胞死亡的调节过程。[结论] 紫菜腐霉激发子基因家族结构保守,均属于ELL (elicitin-like)亚类,可能具有纤维素结合激发子凝集素(CBEL)和加速宿主细胞程序性死亡的功能,结合纤维素,附着在宿主表面,发挥蛋白激酶活性,触发宿主MAPK信号传导通路介导的免疫反应,促进HR细胞死亡。本研究为进一步解析紫菜腐霉的致病机制及紫菜抗病性状的遗传育种提供了理论基础。

    Abstract:

    [Background] Elicitin is small molecule compound secreted by the Oomycetes Phytophthora and Pythium that can induce immune response in the host. [Objective] Identify the elicitin gene family of Pythium porphyrae and analyze its structural features and possible mechanisms of action during the infection. [Methods] Screening the genome of Pythium porphyrae NBRC33253 for members of elicitin gene family using homologous alignment method. Analysis of the physicochemical properties and phylogeny of elicitin family using bioinformatics tools, combined with transcriptomic data and GO functional annotation to discuss possible mechanism of action during the infection. [Results] Twenty-two elicitin gene family members were identified in the Pythium porphyrae genome. 17 elicitin genes were extracellular secretory proteins, four were localized at the plasma membrane and one was anchored to the Golgi apparatus. The elicitin genes are simple and conserved in structure, containing 1-2 CDS sequences, with the number of amino acids ranging from 114 to 2 100 aa and the isoelectric point ranging from 3.61 to 9.88. The phylogenetic analysis revealed an expansion of elicitin family in Pythium porphyrae NBRC33253. Expression analysis showed that six elicitin genes was up-regulated and seven elicitin genes down-regulated after infection, indicating Pythium porphyrae elicitin gene presumably possessed multiple biological functions. As annotated by GO function to cellulose binding elicitor lectin (CBEL) and modulation by symbiont of host defense-related programmed cell death. [Conclusion] The elicitin gene family of Pythium porphyrae is structurally conserved and belongs to the ELL (elicitin-like) subfamily. Due to the annotation, elicitins in NBRC33253 showed several kinds of function, including cellulose binding excitor lectin (CBEL) which could accelerate programmed cell death in host cells by binding cellulose, attaching to the host surface, performing protein kinase activity, triggering host MAPK signaling pathway-mediated immune responses, and promoting HR cell death. This study provides theoretical basis for further elucidation of the pathogenic mechanism of Phythium porphyrae and genetic breeding for disease resistance traits in Pyropia.

    参考文献
    [1] Wang DM, Yu XZ, Xu KP, Bi GQ, Cao M, Zelzion E, Fu CX, Sun PP, Liu Y, Kong FN, et al. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment[J]. Nature Communications, 2020, 11:4028
    [2] Fao. Fishery and Aquaculture Statistics. Global aquaculture production 1950-2019(FishstatJ). In:FAO Fisheries Division[online]. Rome. Updated 2021. www.fao.org/fishery/statistics/software/fishstatj/en[J]. 2021
    [3] Qiu LP, Mao YX, Tang L, Tang XH, Mo ZL. Characterization of Pythium chondricola associated with red rot disease of Pyropia yezoensis (Ueda) (Bangiales, Rhodophyta) from Lianyungang, China[J]. Journal of Oceanology and Limnology, 2019, 37(3):1102-1112
    [4] Park CS, Kakinuma M, Amano H. Detection and quantitative analysis of zoospores of Pythium porphyrae, causative organism of red rot disease in Porphyra, by competitive PCR[J]. Journal of Applied Phycology, 2001, 13(5):433-441
    [5] Kim GH, Moon KH, Kim JY, Shim J, Klochkova TA. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact[J]. ALGAE, 2014, 29(4):249-265
    [6] Lee SJ, Jee BY, Son MH, Lee SR. Infection and cox2 sequence of Pythium chondricola (Oomycetes) causing red rot disease in Pyropia yezoensis (Rhodophyta) in Korea[J]. ALGAE, 2017, 32(2):155-160
    [7] Lee SJ, Hwang MS, Park MA, Baek JM, Ha DS, Lee JE, Lee SR. Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers[J]. ALGAE, 2015, 30(3):217-222
    [8] Uppalapati SR, Fujita Y. Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta)[J]. Journal of Phycology, 2001, 36(2):359-366
    [9] Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G, Pernollet JC. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco[J]. European Journal of Biochemistry, 1989, 183(3):555-563
    [10] Derevnina L, Dagdas YF, De La Concepcion JC, Bialas A, Kellner R, Petre B, Domazakis E, Du J, Wu CH, Lin X, et al. Nine things to know about elicitins[J]. The New Phytologist, 2016, 212(4):888-895
    [11] Jiang RHY, Tyler BM, Whisson SC, Hardham AR, Govers F. Ancient origin of elicitin gene clusters in Phytophthora genomes[J]. Molecular Biology and Evolution, 2006, 23(2):338-351
    [12] Masunaka A, Sekiguchi H, Takahashi H, Takenaka S. Distribution and expression of elicitin-like protein genes of the biocontrol agent Pythium oligandrum[J]. Journal of Phytopathology, 2009, 158(6):417-426
    [13] Misner I, Blouin N, Leonard G, Richards TA, Lane CE. The secreted proteins of Achlya hypogyna and Thraustotheca clavata identify the ancestral Oomycete secretome and reveal gene acquisitions by horizontal gene transfer[J]. Genome Biology and Evolution, 2015, 7(1):120-135
    [14] Takenaka S, Nakamura Y, Kono T, Sekiguchi H, Masunaka A, Takahashi H. Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet[J]. Molecular Plant Pathology, 2006, 7(5):325-339
    [15] Ouyang ZG, Li XH, Huang L, Hong YB, Zhang YF, Zhang HJ, Li DY, Song FM. Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato[J]. Molecular Plant Pathology, 2015, 16(3):238-250
    [16] Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahashi H. Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrumin in tomato[J]. Plant Pathology, 2008, 57(5):870-876
    [17] Fabritius AL, Cvitanich C, Judelson HS. Stage-specific gene expression during sexual development in Phytophthora infestans[J]. Molecular Microbiology, 2002, 45(4):1057-1066
    [18] 邹丹丹. 紫菜腐霉(Pythium porphyrae)全基因组测序及条斑紫菜赤腐病防治技术研究[D]. 青岛:中国海洋大学博士学位论文, 2016 Zou DD. Complete genome sequencing of Pythium prophyrae and control techniques of the red rot disease in Pyropia yezoensis[D]. Qingdao:Doctoral Dissertation of Ocean University of China. 2016(in Chinese)
    [19] Finn RD, Clements J, Eddy SR. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(suppl_2):W29-W37
    [20] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, et al. ExPASy:SIB bioinformatics resource portal[J]. Nucleic Acids Research, 2012, 40(W1):W597-W603
    [21] Queiroz CBD, Santana MF. Prediction of the secretomes of endophytic and nonendophytic fungi reveals similarities in host plant infection and colonization strategies[J]. Mycologia, 2020, 112(3):491-503
    [22] Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX[J]. Current Protocols in Bioinformatics, 2002, Chapter 2:Unit 2.3
    [23] Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A, Yandell M. MAKER:an easy-to-use annotation pipeline designed for emerging model organism genomes[J]. Genome Research, 2007, 18(1):188-196
    [24] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549
    [25] 唐磊. 条斑紫菜先天免疫系统及抗赤腐病机制[D]. 青岛:中国海洋大学博士学位论文, 2020 Tang L. Innate immunity system and red rot disease resistant mechanism in Pyropia yezoensis[D]. Qingdao:Doctoral Dissertation of Ocean University of China. 2020(in Chinese)
    [26] Tang L, Qiu LP, Liu C, Du GY, Mo ZL, Tang XH, Mao YX. Transcriptomic insights into innate immunity responding to red rot disease in red alga Pyropia yezoensis[J]. International Journal of Molecular Sciences, 2019, 20(23):5970
    [27] Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18):3674-3676
    [28] Naveed ZA, Wei XY, Chen JJ, Mubeen H, Ali GS. The PTI to ETI continuum in Phytophthora-plant interactions[J]. Frontiers in Plant Science, 2020, 11:593905
    [29] Qutob D, Huitema E, Gijzen M, Kamoun S. Variation in structure and activity among elicitins from Phytophthora sojae[J]. Molecular Plant Pathology, 2003, 4(2):119-124
    [30] Cooke DEL, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM, et al. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen[J]. PLoS Pathogens, 2012, 8(10):e1002940
    [31] Janků M, Činčalová L, Luhová L, Lochman J, Petřivalský M. Biological effects of Oomycetes elicitins[J]. Plant Protection Science, 2019, 56(1):1-8
    [32] 吴育人. 辣椒疫霉转录组及效应分子的生物信息学研究[D]. 南京:南京农业大学硕士学位论文, 2014 Wu YR. Bioinformatics study of the transcriptome and effector in Phytophthra capsici[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2014(in Chinese)
    [33] Ward GM, Faisan JP Jr, Cottier-Cook EJ, Gachon C, Hurtado AQ, Lim PE, Matoju I, Msuya FE, Bass D, Brodie J. A review of reported seaweed diseases and pests in aquaculture in Asia[J]. Journal of the World Aquaculture Society, 2020, 51(4):815-828
    [34] Dumilag RV. Detection of Pythium porphyrae infecting Philippine Pyropia acanthophora based on morphology and nuclear rRNA internal transcribed spacer sequences[J]. Journal of General Plant Pathology, 2019, 85(1):72-78
    [35] Diehl N, Kim GH, Zuccarello GC. A pathogen of New Zealand Pyropia plicata (bangiales, rhodophyta), Pythium porphyrae (Oomycota)[J]. ALGAE, 2017, 32(1):29-39
    [36] Zou DD, Tang XH, Qiu LP, Mao YX. Defensive physiological characters of Pyropia yezoensis resistant lines to the red rot disease[J]. Journal of Oceanology and Limnology, 2020, 38(2):509-516
    [37] Jiang RHY, De Bruijn I, Haas BJ, Belmonte R, Löbach L, Christie J, Van Den Ackerveken G, Bottin A, Bulone V, Díaz-Moreno SM, et al. Distinctive expansion of potential virulence genes in the genome of the Oomycete fish pathogen Saprolegnia parasitica[J]. PLoS Genetics, 2013, 9(6):e1003272
    [38] Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, et al. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome[J]. Science, 2010, 330(6010):1549-1551
    [39] Ponchet M, Panabières F, Milat ML, Mikes V, Montillet JL, Suty L, Triantaphylides C, Tirilly Y, Blein JP. Are elicitins cryptograms in plant-Oomycete communications?[J]. Cellular and Molecular Life Sciences CMLS, 1999, 56(11/12):1020-1047
    [40] Shah J, Chaturvedi R. Lipid signals in plant-pathogen interactions[EB/OL]. Annual Plant Reviews, 2009, 34:292-333
    [41] Colas V, Conrod S, Venard P, Keller H, Ricci P, Panabières F. Elicitin genes expressed in vitro by certain tobacco isolates of Phytophthora parasitica are down regulated during compatible interactions[J]. Molecular Plant-Microbe Interactions®, 2001, 14(3):326-335
    [42] Li C, Kong FN, Sun PP, Bi GQ, Li N, Mao YX, Sun MJ. Genome-wide identification and expression pattern analysis under abiotic stress of mitogen-activated protein kinase genes in Pyropia yezoensis[J]. Journal of Applied Phycology, 2018, 30(4):2561-2572
    [43] Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, Katou YR, Yaeno T, Shirasu K, Yoshioka H. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana[J]. The Plant Cell, 2015, 27(9):2645-2663
    [44] Gaulin E, Jauneau A, Villalba F, Rickauer M, Esquerré-Tugayé MT, Bottin A. The CBEL glycoprotein of Phytophthora parasitica-nicotianaeis involved in cell wall deposition and adhesion to cellulosic substrates[J]. Journal of Cell Science, 2002, 115(23):4565-4575
    [45] Perrine-Walker F. Phytophthora palmivora-cocoa interaction[J]. Journal of Fungi, 2020, 6(3):167
    [46] Chibucos MC, Collmer CW, Torto-Alalibo T, Gwinn-Giglio M, Lindeberg M, Li DH, Tyler BM. Programmed cell death in host-symbiont associations, viewed through the gene ontology[J]. BMC Microbiology, 2009, 9(1):1-10
    [47] Wang Y, Tyler BM, Wang YC. Defense and counterdefense during plant-pathogenic Oomycete infection[J]. Annual Review of Microbiology, 2019, 73(1):667-696
    [48] Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Paul Keizer LC, Zhou J, Liebrand TWH, Xie CH, Govers F, Robatzek S, et al. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato[J]. Nature Plants, 2015, 1:15034
    引证文献
引用本文

刘聪,杜国英,唐磊,高天,唐祥海,莫照兰,茅云翔. 紫菜腐霉激发子基因家族特征及其在感染过程中的作用[J]. 微生物学通报, 2022, 49(1): 139-152

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-13
  • 录用日期:2021-07-02
  • 在线发布日期: 2021-12-30
文章二维码