科微学术

微生物学通报

鸟肠球菌(Enterococcus avium)中α-L-鼠李糖苷酶基因的克隆表达及酶学性质
作者:
基金项目:

山西省国际科技合作项目(201803D421065);中央引导地方科技发展基金(YDZX20201400001443);国家自然科学基金(30672621,81173473);太原市科学技术发展计划(120247-08)


Cloning, expression and enzymology properties of α-L-rhamnosidase gene from Enterococcus avium
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 前期工作中筛选出一株产α-L-鼠李糖苷酶的细菌,经分子生物学方法鉴定为鸟肠球菌(Enterococcus avium)。α-L-鼠李糖苷酶能够从天然类黄酮化合物中特异性切割末端鼠李糖,在食品生产、医药加工和化工等方面具有极大的开发前景和应用价值。[目的] 克隆、表达鸟肠球菌中α-L-鼠李糖苷酶基因,进一步对重组蛋白的酶学性质进行研究。[方法] 以鸟肠球菌(Enterococcus avium) strain 352基因组中推定的α-L-鼠李糖苷酶基因序列为基础,设计特异性引物扩增其编码区序列。以pET-28a(+)为载体构建重组表达质粒,将重组蛋白在Escherichia coli BL21(DE3)感受态细胞中进行诱导表达。使用镍亲和层析纯化重组蛋白,以pNPR为底物测定重组蛋白的酶学性质。[结果] 重组蛋白EaRha1分子量大小约为130 kDa。以pNPR为底物,EaRha1最适pH是7.0,最适温度为50 ℃,在pH 5.0-8.0稳定性较好,在40 ℃以下能保持较高酶活。金属离子对EaRha1有不同程度的促进或抑制作用。甲醇对EaRha1有抑制作用,并且抑制作用随着甲醇浓度的增大而增强。酶动力学常数KmVmax分别为0.35 mmol/L和4.2 μmol/(mg·min) (R2=0.999)。EaRha1能催化水解新橙皮苷、柚皮苷和芦丁。[结论] 通过对重组蛋白EaRha1酶学性质的研究,确定了该蛋白对黄酮类化合物的水解特性,为黄酮类化合物的生物转化奠定了理论基础。

    Abstract:

    [Background] A bacterium strain producing α-L-rhamnosidase was screened and identified as Enterococcus avium by molecular biological methods in the preliminary work. α-L-rhamnosidase can specifically cut terminal rhamnose from natural flavonoid compounds, which has great development prospect and application value in food production, pharmaceutical processing and chemical industry. [Objective] The α-L-rhamnosidase gene from E. avium was cloned and expressed, and the enzymatic properties of the recombinant protein were further studied. [Methods] Based on the putative α-L-rhamnosidase gene sequence in the genome of Enterococcus avium strain 352, specific primers were designed to amplify its coding sequence. Recombinant expression plasmid was constructed using pET-28a(+) as vector and the recombinant protein was expressed in Escherichia coli BL21(DE3) competent cells. The recombinant protein was purified by nickel affinity chromatography, and the enzymatic properties were determined using pNPR as a substrate. [Results] The molecular weight of the fusion protein EaRha1 is about 130 kDa. The optimal pH of EaRha1 is 7.0, the optimal temperature is 50℃, EaRha1 is stable at pH 5.0-8.0 and can maintain higher enzyme activity below 40℃. Metal ions can promote or inhibit EaRha1 in different degrees. Methanol has inhibitory effect on EaRha1, and the inhibitory effect increases with the increase of methanol concentration. The kinetic characteristic constants Km and Vmax of EaRha1 were 0.35 mmol/L and 4.2 μmol/(mg·min) (R2=0.999) respectively. The recombinant EaRha1 could catalyze the hydrolysis of neohesperidin, naringin and rutin. [Conclusion] In this study, the hydrolysis characteristics of the protein to flavonoids was determined by studying the enzymatic properties of recombinant protein EaRha1, which laid a theoretical foundation for the biotransformation of flavonoids.

    参考文献
    [1] Li LJ, Gong JY, Wang S, Li GL, Gao T, Jiang ZD, Cheng YS, Ni H, Li QB. Heterologous expression and characterization of a new clade of Aspergillus α-L-rhamnosidase suitable for citrus juice processing[J]. Journal of Agricultural and Food Chemistry, 2019, 67(10):2926-2935
    [2] Hall DH. A new enzyme of the glycosidase type[J]. Nature, 1938, 142(3586):150
    [3] Qian S, Yu HS, Zhang CZ, Lu MC, Wang HY, Jin FX. Purification and characterization of dioscin-α-L-rhamnosidase from pig liver[J]. Chemical and Pharmaceutical Bulletin, 2005, 53(8):911-914
    [4] 王红英, 钱斯日古楞, 鱼红闪, 臧姝, 金凤燮. 羊肝源穿山龙薯蓣皂苷-α-L-鼠李糖苷酶的分离及其动力学特性[J]. 高等学校化学学报, 2007, 28(4):663-667 Wang HY, Qian S, Yu HS, Zang S, Jin FX. Isolation and kinetic properties of dioscin-α-L-rhamnosidase from sheep liver[J]. Chemical Journal of Chinese Universities, 2007, 28(4):663-667(in Chinese)
    [5] 邬子彬, 李大伟, 陆豫. 一株产α-L-鼠李糖苷酶菌株的分析与鉴定[J]. 南昌大学学报(理科版), 2016, 40(4):346-350,359 Wu ZB, Li DW, Lu Y. Analysis and identification of a α-L-rhamnosidase producing strain[J]. Journal of Nanchang University:Natural Science, 2016, 40(4):346-350,359(in Chinese)
    [6] 于越, 倪辉, 李利君, 陈月龙, 朱艳冰, 肖安风, 蔡慧农, 苏文金. 一种棘孢曲霉α-L-鼠李糖苷酶的结构及性质特征研究[J]. 现代食品科技, 2015, 31(12):82-92 Yu Y, Ni H, Li LJ, Chen YL, Zhu YB, Xiao AF, Cai HN, Su WJ. Characterization of structure and properties of α-L-rhamnosidase from Aspergillus aculeatus[J]. Modern Food Science and Technology, 2015, 31(12):82-92(in Chinese)
    [7] 王艳君. 肠球菌中α-L-鼠李糖苷酶的分离纯化及酶学性质研究[D]. 济南:山东轻工业学院硕士学位论文, 2011 Wang YJ. Purification and characterization of α-L-rhamnosidase in Enterococcus duerans[D]. Jinan:Master's Thesis of Shandong Polytechnic University, 2011(in Chinese)
    [8] 吉亚茹. 多形拟杆菌α-L-鼠李糖苷酶资源挖掘及其结构分析[D]. 太原:山西大学硕士学位论文, 2018 Ji YR. Discovery of novel α-L-rhamnosidases from Bacteroides thetaiotaomicron VPI-5482 and structural analysis[D]. Taiyuan:Master's Thesis of Shanxi University, 2018(in Chinese)
    [9] Hashimoto W, Nankai H, Sato N, Kawai S, Murata K. Characterization of α-L-rhamnosidase of Bacillus sp. GL1 responsible for the complete depolymerization of gellan[J]. Archives of Biochemistry and Biophysics, 1999, 368(1):56-60
    [10] Mensitieri F, De Lise F, Strazzulli A, Moracci M, Notomista E, Cafaro V, Bedini E, Sazinsky MH, Trifuoggi M, Di Donato A, et al. Structural and functional insights into RHA-P, a bacterial GH106α-L-rhamnosidase from Novosphingobium sp. PP1Y[J]. Archives of Biochemistry and Biophysics, 2018, 648:1-11
    [11] Ávila M, Jaquet M, Moine D, Requena T, Peláez C, Arigoni F, Jankovic I. Physiological and biochemical characterization of the two alpha-L-rhamnosidases of Lactobacillus plantarum NCC245[J]. Microbiology (Reading), 2009, 155(Pt 8):2739-2749
    [12] 董德源. 黑曲霉中α-L-鼠李糖苷酶基因的调取、克隆和初步表达[D]. 南昌:南昌大学硕士学位论文, 2019 Dong DY. Extraction, cloning and preliminary expression of α-L-rhamnosidase gene from Aspergillus niger[D]. Nanchang:Master's Thesis of Nanchang University, 2019(in Chinese)
    [13] 王艳君, 刘同军, 曹涛, 张浩忠. α-L-鼠李糖苷酶的研究进展[J]. 中国酿造, 2010, 29(10):11-15 Wang YJ, Liu TJ, Cao T, Zhang HZ. Research progress of α-L-rhamnosidase[J]. China Brewing, 2010, 29(10):11-15(in Chinese)
    [14] Xu L, Liu XH, Yin ZH, Liu Q, Lu LL, Xiao M. Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design[J]. Applied Microbiology and Biotechnology, 2016, 100(24):10385-10394
    [15] Rojas NL, Voget CE, Hours RA, Cavalitto SF. Purification and characterization of a novel alkaline α-L-rhamnosidase produced by Acrostalagmus luteo albus[J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(9):1515-1522
    [16] 张晓萌, 王圆圆, 王洪晶. 中药材黄酮类化合物的研究进展[J]. 广东化工, 2020, 47(24):55-56 Zhang XM, Wang YY, Wang HJ. Research progress on flavonoids of Chinese medicines[J]. Guangdong Chemical Industry, 2020, 47(24):55-56(in Chinese)
    [17] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10):2731-2739
    [18] Letunic I, Bork P. 20 years of the SMART protein domain annotation resource[J]. Nucleic Acids Research, 2018, 46(D1):D493-D496
    [19] Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL:an automated protein homology-modeling server[J]. Nucleic Acids Research, 2003, 31(13):3381-3385
    [20] 高红宁, 潘雨柔, 殷奕, 毛春芹, 陆兔林. HPLC法测定枳芩颗粒中黄酮类成分的含量[J]. 中国医药科学, 2021, 11(1):79-82 Gao HN, Pan YR, Yin Y, Mao CQ, Lu TL. Determination of flavonoids content in Zhiqin granules by HPLC method[J]. China Medicine and Pharmacy, 2021, 11(1):79-82(in Chinese)
    [21] 夏叶. 蛇葡萄属药用植物DNA分子鉴定及化学成分分析[D]. 武汉:湖北中医药大学硕士学位论文, 2016 Xia Y. Study of medicinal plants of Ampelopsis by DNA molecular identification and chemical composition analysis[D]. Wuhan:Master's Thesis of Hubei University of Chinese Medicine, 2016(in Chinese)
    [22] 彭瑶, 曾嵘, 吴尚洁, 雷思, 孙智娜, 何秀琴, 李娟, 李顺祥. 一测多评法测定藏族药烈香杜鹃中5种黄酮类成分的含量[J]. 中国中药杂志, 2021, 46(9):2229-2236 Peng Y, Zeng R, Wu SJ, Lei S, Sun ZN, He XQ, Li J, Li SX. Determination of five flavonoids in Tibetan medicine Rhododendron anthopogonoides by quantitative analysis of multi-components by single marker (QAMS)[J]. China Journal of Chinese Materia Medica, 2021, 46(9):2229-2236(in Chinese)
    [23] 李彩凤, 胡欣, 金鹏飞, 李清, 孙淑仃, 毕开顺, 付宏征. HPLC法同时测定三叶青块根中6个黄酮类成分的含量[J]. 中国药房, 2019, 30(13):1755-1758 Li CF, Hu X, Jin PF, Li Q, Sun SD, Bi KS, Fu HZ. Simultaneous determination of 6 flavonoids in the roots of Tetrastigma hemsleyanum by HPLC[J]. China Pharmacy, 2019, 30(13):1755-1758(in Chinese)
    [24] 宋军妹, 朱云芳, 许伟. 一测多评法测定五味健脑合剂中7种成分的含量[J]. 西北药学杂志, 2020, 35(6):807-813 Song JM, Zhu YF, Xu W. Determination of 7 components in Wuwei Jiannao mixture by QAMS[J]. Northwest Pharmaceutical Journal, 2020, 35(6):807-813(in Chinese)
    [25] 杨艳文, 孟凡双, 郜玉钢, 张连学. 高效液相色谱法同时测定人参制剂中20种人参皂苷方法的建立[J]. 食品科学, 2016, 37(22):131-135 Yang YW, Meng FS, Gao YG, Zhang LX. Simultaneous determination of twenty ginsenosides in ginseng preparations by HPLC[J]. Food Science, 2016, 37(22):131-135(in Chinese)
    [26] 巩建业, 吴喆瑜, 李利君, 倪辉. GH78家族真菌α-L-鼠李糖苷酶分子系统进化关系分析[J]. 现代食品科技, 2017, 33(10):13-20 Gong JY, Wu ZY, Li LJ, Ni H. Analysis of evolutionary relationship of GH78 fungal α-L-rhamnosidase[J]. Modern Food Science and Technology, 2017, 33(10):13-20(in Chinese)
    [27] Koseki T, Mese Y, Nishibori N, Masaki K, Fujii T, Handa T, Yamane Y, Shiono Y, Murayama T, Iefuji H. Characterization of an α-L-rhamnosidase from Aspergillus kawachii and its gene[J]. Applied Microbiology and Biotechnology, 2008, 80(6):1007-1013
    [28] Alvarenga AE, Romero CM, Castro GR. A novel α-L-rhamnosidase with potential applications in citrus juice industry and in winemaking[J]. European Food Research and Technology, 2013, 237(6):977-985
    [29] Miake F, Satho T, Takesue H, Yanagida F, Kashige N, Watanabe K. Purification and characterization of intracellular α-l-rhamnosidase from Pseudomonas paucimobilis FP2001[J]. Archives of Microbiology, 2000, 173(1):65-70
    [30] Wu T, Pei JJ, Ge L, Wang ZZ, Ding G, Xiao W, Zhao LG. Characterization of a α-L-rhamnosidase from Bacteroides thetaiotaomicron with high catalytic efficiency of epimedin C[J]. Bioorganic Chemistry, 2018, 81:461-467
    [31] Li LJ, Yu Y, Zhang X, Jiang ZD, Zhu YB, Xiao AF, Ni H, Chen F. Expression and biochemical characterization of recombinant α-L-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528[J]. International Journal of Biological Macromolecules, 2016, 85:391-399
    [32] Zhang T, Yuan WB, Li ML, Miao M, Mu WM. Purification and characterization of an intracellular α-L-rhamnosidase from a newly isolated strain, Alternaria alternata SK37.001[J]. Food Chemistry, 2018, 269:63-69
    [33] Li BC, Ji YR, Li YQ, Ding GB. Characterization of a glycoside hydrolase family 78α-L-rhamnosidase from Bacteroides thetaiotaomicron VPI-5482 and identification of functional residues[J]. 3 Biotech, 2018, 8(2):1-12
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑鼎玉,陈婕,郑紫云,卢丹丹,杨官娥. 鸟肠球菌(Enterococcus avium)中α-L-鼠李糖苷酶基因的克隆表达及酶学性质[J]. 微生物学通报, 2022, 49(1): 49-60

复制
分享
文章指标
  • 点击次数:568
  • 下载次数: 1249
  • HTML阅读次数: 1430
  • 引用次数: 0
历史
  • 收稿日期:2021-06-09
  • 录用日期:2021-07-11
  • 在线发布日期: 2021-12-30
文章二维码