科微学术

微生物学通报

定点突变提高枯草芽孢杆菌角蛋白酶的低温催化活性
作者:
基金项目:

江苏省重点研发(社会发展)项目(BE2021624)


Improving the low-temperature activity of Bacillus subtilis keratinase by site-directed mutagenesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 角蛋白酶KerZ1能在60 ℃的最适温度下高效降解角蛋白底物,然而其在低于最适温度条件下的酶活极低,难以适应工业生产和实际应用的要求。[目的] 提升角蛋白酶KerZ1的低温催化活性。[方法] 结合同源比对与折叠自由能分析向角蛋白酶KerZ1引入氨基酸突变,并对突变体的酶学性质进行研究。[结果] 对KerZ1柔性环区域(loop 13)引入的氨基酸突变T210S、N211S、T212G均使其低温催化活性提升。随后对loop 13进行了复合突变并构建了三突变体T210S/N211S/T212G,该突变体在中等温度(40 ℃)和低温(20 ℃)条件下的比酶活较KerZ1分别提升了45.68%和85.74%。同时,该突变体在60 ℃的半衰期(t1/2)仅下降11.52%,说明突变体T210S/N211S/T212G在不严重损失热稳定性的情况下其低温催化活性得到了显著的提高。[结论] 氢键的减少及氨基酸疏水性降低导致的蛋白质分子柔性的提升,可能是导致突变体酶T210S/N211S/T212G低温催化活性提升的主要原因。本研究从实际应用出发对角蛋白酶进行低温催化活性改造,为其工业化与应用化奠定了基础。

    Abstract:

    [Background] The keratinase KerZ1 could efficiently degrade keratin at the optimum temperature of 60℃. However, the poor activity below the optimum temperature makes the enzyme difficult to be applied in industrial production. [Objective] To improve the low-temperature activity of KerZ1. [Methods] Based on homologous alignment and analysis of folding free energy, site-directed mutagenesis was employed for KerZ1, and then the enzymatic properties of the mutants were characterized. [Results] The introduction of T210S, N211S, or T212G into the flexible loop region (loop 13) increased the low-temperature activity of KerZ1. Subsequently, the compound mutant T210S/N211S/T212G was constructed, which showed the activity 45.68% and 85.74% higher than that of KerZ1 at moderate (40℃) and low (20℃) temperatures, respectively. Meanwhile, the half-life (t1/2) at 60℃ decreased by only 11.52%, indicating that the low-temperature activity of T210S/N211S/T212G was improved without serious loss of thermostability. [Conclusion] The reduction of hydrogen bonds and surface hydrophobicity may be the main reasons for the increased flexibility of the keratinase molecule, which enhances the low-temperature activity of T210S/N211S/T212G. In summary, this study modifies the keratinase to improve its low-temperature activity and lays a foundation for the practical application of this enzyme.

    参考文献
    [1] Wang B, Yang W, Mckittrick J, Meyers MA. Keratin:structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration[J]. Progress in Materials Science, 2016, 76:229-318
    [2] Qiu JW, Wilkens C, Barrett K, Meyer AS. Microbial enzymes catalyzing keratin degradation:classification, structure, function[J]. Biotechnology Advances, 2020, 44:107607
    [3] De Oliveira Martinez J, Cai GQ, Nachtschatt M, Navone L, Zhang ZY, Robins K, Speight R. Challenges and opportunities in identifying and characterising keratinases for value-added peptide production[J]. Catalysts, 2020, 10(2):184
    [4] Verma A, Singh H, Anwar S, Chattopadhyay A, Tiwari KK, Kaur S, Dhilon GS. Microbial keratinases:industrial enzymes with waste management potential[J]. Critical Reviews in Biotechnology, 2017, 37(4):476-491
    [5] Jaouadi NZ, Rekik H, Badis A, Trabelsi S, Belhoul M, Yahiaoui AB, Ben Aicha H, Toumi A, Bejar S, Jaouadi B. Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities[J]. PLoS One, 2013, 8(10):e76722
    [6] Sanghvi G, Patel H, Vaishnav D, Oza T, Dave G, Kunjadia P, Sheth N. A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation[J]. International Journal of Biological Macromolecules, 2016, 87:256-262
    [7] 侯玉煌, 丁宏标. 角蛋白酶研究进展及其在饲料工业中的应用[J]. 中国畜牧杂志, 2018, 54(1):13-18 Hou YH, Ding HB. Research progress on keratinase and its applications in feed industry[J]. Chinese Journal of Animal Science, 2018, 54(1):13-18(in Chinese)
    [8] Peng Z, Mao XZ, Zhang J, Du GC, Chen J. Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis[J]. Biotechnology for Biofuels, 2020, 13(1):1-12
    [9] Siddiqui KS. Some like it hot, some like it cold:temperature dependent biotechnological applications and improvements in extremophilic enzymes[J]. Biotechnology Advances, 2015, 33(8):1912-1922
    [10] Nandanwar SK, Borkar SB, Lee JH, Kim HJ. Taking advantage of promiscuity of cold-active enzymes[J]. Applied Sciences, 2020, 10(22):8128
    [11] Siddiqui KS. Defying the activity-stability trade-off in enzymes:taking advantage of entropy to enhance activity and thermostability[J]. Critical Reviews in Biotechnology, 2017, 37(3):309-322
    [12] Struvay C, Feller G. Optimization to low temperature activity in psychrophilic enzymes[J]. International Journal of Molecular Sciences, 2012, 13(9):11643-11665
    [13] Sasaki M, Uno M, Akanuma S, Yamagishi A. Random mutagenesis improves the low-temperature activity of the tetrameric 3-isopropylmalate dehydrogenase from the hyperthermophile Sulfolobus tokodaii[J]. Protein Engineering, Design and Selection, 2008, 21(12):721-727
    [14] Hu YC, Li T, Tu Z, He QH, Li YP, Fu JH. Engineering a recombination neutral protease I from Aspergillus oryzae to improve enzyme activity at acidic pH[J]. RSC Advances, 2020, 10(51):30692-30699
    [15] Zhao HY, Feng H. Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution[J]. BMC Biotechnology, 2018, 18(1):34
    [16] Okai M, Onoue C, Tsuda R, Ishigami C, Yoshida-Mishima C, Urano N, Kato C, Ishida M. Q301P mutant of Vibrio PR protease affects activities under low-temperature and high-pressure conditions[J]. Journal of Bioscience and Bioengineering, 2020, 130(4):341-346
    [17] Sugii T, Akanuma S, Yagi S, Yagyu K, Shimoda Y, Yamagishi A. Characterization of the low-temperature activity of Sulfolobus tokodaii glucose-1-dehydrogenase mutants[J]. Journal of Bioscience and Bioengineering, 2014, 118(4):367-371
    [18] Zhang R, He LM, Shen JD, Miao Y, Tang XH, Wu Q, Zhou JP, Huang ZX. Improving low-temperature activity and thermostability of exo-inulinase InuAGN25 on the basis of increasing rigidity of the Terminus and flexibility of the catalytic domain[J]. Bioengineered, 2020, 11(1):1233-1244
    [19] Kumar V, Yedavalli P, Gupta V, Rao NM. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures[J]. Protein Engineering, Design and Selection, 2014, 27(3):73-82
    [20] Derache C, Epinette C, Roussel A, Gabant G, Cadene M, Korkmaz B, Gauthier F, Kellenberger C. Crystal structure of greglin, a novel non-classical Kazal inhibitor, in complex with subtilisin[J]. The FEBS Journal, 2012, 279(24):4466-4478
    [21] 苗周迪. 枯草芽孢杆菌角蛋白酶热稳定性的改造[D]. 无锡:江南大学硕士学位论文, 2021 Miao ZD. Modification the thermostability of Bacillus subtilis keratinase[D]. Wuxi:Master's Thesis of Jiangnan University, 2021(in Chinese)
    [22] Lv LX, Sim MH, Li YD, Min J, Feng WH, Guan WJ, Li YQ. Production, characterization and application of a keratinase from Chryseobacterium L99 sp. nov.[J]. Process Biochemistry, 2010, 45(8):1236-1244
    [23] Ó'Fágáin C. Enzyme stabilization-recent experimental progress[J]. Enzyme and Microbial Technology, 2003, 33(2/3):137-149
    [24] Su C, Gong JS, Sun YX, Qin JF, Zhai S, Li H, Li H, Lu ZM, Xu ZH,Shi JS. Combining pro-peptide engineering and multisite saturation mutagenesis to improve the catalytic potential of keratinase[J]. ACS synthetic biology, 2019, 8(2):435-433
    [25] 田健, 王平, 伍宁丰, 范云六. 理性设计提高蛋白质热稳定性的研究进展[J]. 生物技术进展, 2012, 2(4):233-239 Tian J, Wang P, Wu NF, Fan YL. Recent advances in the rational design to improve the protein thermostability[J]. Current Biotechnology, 2012, 2(4):233-239(in Chinese)
    [26] 童理明, 刘松, 李江华, 堵国城, 陈坚. 基于蛋白质折叠自由能分析的定点突变提高谷氨酰胺转胺酶热稳定性[J]. 食品与生物技术学报, 2018, 37(12):1278-1283 Tong LM, Liu S, Li JH, Du GC, Chen J. Improvement of TGase thermal stability through site-directed mutagenesis based on analysis of folding free energy[J]. Journal of Food Science and Biotechnology, 2018, 37(12):1278-1283(in Chinese)
    [27] 贾如琰, 何玉凤, 王荣民, 李芳蓉, 王艳. 角蛋白的分子构成、提取及应用[J]. 化学通报, 2008, 71(4):265-271 Jia RY, He YF, Wang RM, Li FR, Wang Y. Advanced in structure, extract and applications of keratins[J]. Chemistry, 2008, 71(4):265-271(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周冠宇,李江华,彭政,苗周迪,冒鑫哲,张娟. 定点突变提高枯草芽孢杆菌角蛋白酶的低温催化活性[J]. 微生物学通报, 2022, 49(1): 1-13

复制
分享
文章指标
  • 点击次数:970
  • 下载次数: 1326
  • HTML阅读次数: 1198
  • 引用次数: 0
历史
  • 收稿日期:2021-08-16
  • 录用日期:2021-09-17
  • 在线发布日期: 2021-12-30
文章二维码