科微学术

微生物学通报

基于转录组解析淡玫红鹅膏环肽基因家族特征及其系统发育
作者:
基金项目:

广州市科技计划重点项目(201804020018);国家自然科学基金(31970024);广东省科技计划(2019B121202005,2018B030324001,2018B020205001)


Characteristics and phylogeny of the cyclic peptide gene family in Amanita pallidorosea: based on transcriptome analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 淡玫红鹅膏(Amanita pallidorosea)是鹅膏属檐托鹅膏组的一种剧毒鹅膏菌,其子实体内含有丰富的鹅膏环肽毒素,但其编码毒环肽和相关肽的基因家族“MSDIN”尚待深入研究。[目的] 探究淡玫红鹅膏中编码毒环肽及相关肽的基因家族成员的多样性、保守性及其系统发育。[方法] 采用Illumina HiSeq 2000平台对淡玫红鹅膏转录组进行测序,使用TBLASTn软件对MSDIN基因家族进行检索,并设计特异性引物进行PCR验证,通过生物信息学比对分析MSDIN基因家族成员的种类和序列构成,通过重建分子系统发育树了解其演化历程。[结果] 通过对MSDIN基因家族的查找,从转录组数据获得了60条环肽编码基因,经PCR验证其可编码32条环肽,包括α-鹅膏毒肽、β-鹅膏毒肽和羧基二羟鬼笔毒肽。本研究报道了8条新环肽。分子系统发育树分析显示,鹅膏环肽分为鹅膏毒肽、鬼笔毒肽和未知功能环肽3大支。系统发育结合保守序列推测出7条潜在的新毒肽。[结论] 淡玫红鹅膏具有丰富的鹅膏环肽资源,利用转录组测序能够系统挖掘鹅膏环肽新资源,为其整体结构解析奠定基础。

    Abstract:

    [Background] Amanita pallidorosea is a lethal Amanita species in the sect. Phalloideae, containing abundant cyclic peptide toxins. However, its gene family (MSDIN) encoding the toxic peptides and related peptides needs further systematic study. [Objective] This paper aims to explore the diversity, conservation, and phylogeny of genes encoding toxic peptides and related peptides in A. pallidorosea. [Methods] Illumina HiSeq 2000 platform was used for the transcriptome sequencing of A. pallidorosea and TBLASTn for searching MSDIN genes. Specific primers were designed for PCR verification. The types and sequence composition of MSDIN genes were analyzed with the bioinformatics method, and the phylogenetic tree was reconstructed to clarify the evolution. [Results] A total of 60 genes encoding cyclic peptides were obtained from the transcriptome data, which encoded 32 cyclic peptides as verified by PCR, including α-amanitin, β-amanitin, and phallacidin. Among them, 8 new cyclic peptide sequences were reported for the first time in this study. Molecular phylogenetic analysis showed that all cyclic peptides were classified into three clades: amatoxins, phallotoxins, and cyclic peptides of unknown function. Seven potential and new toxic peptides were predicted according to phylogenetic analysis and conserved sequences. [Conclusion] A. pallidorosea boasts abundant cyclic peptides. Transcriptome sequencing can help discover new resources of cyclic peptides in A. pallidorosea, which lays the foundation for the overall structure analysis.

    参考文献
    [1] Zhang P, Chen ZH, Xiao B, Tolgor B, Bao HY, Yang ZL. Lethal amanitas of East Asia characterized by morphological and molecular data[J]. Fungal Diversity, 2010, 42(1):119-133
    [2] Cai Q, Cui YY, Yang ZL. Lethal Amanita species in China[J]. Mycologia, 2016, 108(5):993-1009
    [3] Cao RM, Liu Z, Zhang J, Liu SQ, Sun YB, Zhang J, Liu SH, Liu LZ, Cao XL, Jia TH. Disposal report of a case of mushroom poisoning caused by Amanita pallidorosea[J]. Journal of Shandong University:Health Sciences, 2011, 49(12):160-162,164(in Chinese)曹若明, 刘仲, 张济, 刘守钦, 孙延斌, 张军, 刘素华, 刘岚铮, 曹小丽, 贾堂宏. 一起淡玫红鹅膏菌中毒事件处置报告[J]. 山东大学学报:医学版, 2011, 49(12):160-162,164
    [4] Sun YB, Cao RM, Liu SH, Zhang J, Liu Z, Cao XL. Investigation on a case of poisoning caused by Amanita pallidorosea[J]. Preventive Medicine Tribune, 2012, 18(10):778-779,782(in Chinese)孙延斌, 曹若明, 刘素华, 张军, 刘仲, 曹小丽. 1起误食淡玫红鹅膏菌引起的中毒调查[J]. 预防医学论坛, 2012, 18(10):778-779,782
    [5] Deng WQ, Li TH, Zhang M, Xiao ZD, He Y, Xu JY. Analysis of common poisonous species of Amanita and their poisoning cases in South China[J]. Mycosystema, 2020, 39(9):1750-1758(in Chinese)邓旺秋, 李泰辉, 张明, 肖正端, 贺勇, 徐隽彦. 华南常见毒鹅膏菌及其中毒事件分析[J]. 菌物学报, 2020, 39(9):1750-1758
    [6] Tang SS, Zhou Q, He ZM, Luo T, Zhang P, Cai Q, Yang ZL, Chen J, Chen ZH. Cyclopeptide toxins of lethal amanitas:compositions, distribution and phylogenetic implication[J]. Toxicon, 2016, 120:78-88
    [7] Wieland T. Peptides of Poisonous Amanita Mushrooms[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1986
    [8] Luo H. Advances of omics research on poisonous mushrooms[J]. Mycosystema, 2019, 38(12):2087-2098(in Chinese)罗宏. 毒蘑菇的组学研究[J]. 菌物学报, 2019, 38(12):2087-2098
    [9] Hallen HE, Luo H, Scott-Craig JS, Walton JD. Gene family encoding the major toxins of lethal Amanita mushrooms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48):19097-19101
    [10] Luo H, Hong SY, Sgambelluri RM, Angelos E, Li X, Walton JD. Peptide macrocyclization catalyzed by a prolyl oligopeptidase involved in α-amanitin biosynthesis[J]. Chemistry & Biology, 2014, 21(12):1610-1617
    [11] Pulman JA, Childs KL, Sgambelluri RM, Walton JD. Expansion and diversification of the MSDIN family of cyclic peptide genes in the poisonous agarics Amanita phalloides and A. bisporigera[J]. BMC Genomics, 2016, 17(1):1038
    [12] He Y, Zhang CH, Deng WQ, Li TH, Zhou XY. De novo transcriptome sequencing of highly toxic Amanita rimosa transcriptome and analyses of poison-peptide-related gene family[J]. Genomics and Applied Biology, 2019, 38(6):2603-2612(in Chinese)贺勇, 张成花, 邓旺秋, 李泰辉, 周小云. 剧毒裂皮鹅膏转录组测序与毒肽相关基因家族分析[J]. 基因组学与应用生物学, 2019, 38(6):2603-2612
    [13] Luo H, Cai Q, Lüli Y, Li X, Sinha R, Hallen-Adams HE, Yang ZL. The MSDIN family in amanitin-producing mushrooms and evolution of the prolyl oligopeptidase genes[J]. IMA Fungus, 2018, 9:225-242
    [14] He Y, Zhang CH, Deng WQ, Zhou XY, Li TH, Li CH. Transcriptome sequencing analysis of the MSDIN gene family encoding cyclic peptides in lethal Amanita fuligineoides[J]. Toxicon, 2020, 183:61-68
    [15] Li P, Deng WQ, Li TH. The molecular diversity of toxin gene families in lethal Amanita mushrooms[J]. Toxicon, 2014, 83:59-68
    [16] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7):644-652
    [17] Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants[J]. Nucleic Acids Research, 2010, 38(6):1767-1771
    [18] Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874
    [19] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 215(3):403-410
    [20] Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18):3674-3676
    [21] Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. InterProScan:protein domains identifier[J]. Nucleic Acids Research, 2005, 33(Web Server issue):W116-W120
    [22] Li P, Deng WQ, Li TH, Song B, Shen YH. Illumina-based de novo transcriptome sequencing and analysis of Amanita exitialis basidiocarps[J]. Gene, 2013, 532(1):63-71
    [23] He ZM, Long P, Fang F, Li SN, Zhang P, Chen ZH. Diversity of MSDIN family members in amanitin-producing mushrooms and the phylogeny of the MSDIN and prolyl oligopeptidase genes[J]. BMC Genomics, 2020, 21(1):440
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

占宁,王刚正,张成花,周小云,邓旺秋,李泰辉. 基于转录组解析淡玫红鹅膏环肽基因家族特征及其系统发育[J]. 微生物学通报, 2021, 48(12): 4799-4816

复制
分享
文章指标
  • 点击次数:343
  • 下载次数: 1123
  • HTML阅读次数: 1567
  • 引用次数: 0
历史
  • 收稿日期:2021-03-03
  • 录用日期:2021-04-10
  • 在线发布日期: 2021-12-03
文章二维码