科微学术

微生物学通报

粪便微生物宏基因组来源GH1 β-葡萄糖苷酶的重组表达及酶学性质
作者:
基金项目:

国家自然科学基金(31860299);国家重点研发计划(2017YFB0308400)


Purification and characterization of GH1 β-glucosidase from fecal microbes metagenome
Author:
  • FAN Qin

    FAN Qin

    School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Jinru

    YANG Jinru

    School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TANG Xianghua

    TANG Xianghua

    School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China;Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan 650500, China;Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Zunxi

    HUANG Zunxi

    School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China;Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan 650500, China;Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Yunjuan

    YANG Yunjuan

    School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China;Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan 650500, China;Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Qian

    WU Qian

    School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China;Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan 650500, China;Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Bo

    XU Bo

    School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China;Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan 650500, China;Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] β-葡萄糖苷酶是一类重要的纤维素分解酶类。目前较多可培养微生物来源的β-葡萄糖苷酶(Bgl)存在热稳定性和酸碱稳定性差及作用范围窄的问题。[目的] 从滇金丝猴粪便微生物宏基因组中挖掘新型β-葡萄糖苷基因,异源表达并研究其酶学性质,为食品等领域提供新型酶资源。[方法] 从粪便微生物宏基因组出发,扩增和异源表达β-葡萄糖苷酶基因BglRBS_26BglRBS_9,并进行酶学性质研究。[结果] 获得GH1家族重组β-葡萄糖苷酶BglRBS_26和BglRBS_9,分子量分别为60 kD和50 kD。BglRBS_26的最适作用条件为pH 6.0、45 ℃;BglRBS_9的最适作用条件为pH 5.0、40 ℃。BglRBS_26和BglRBS_9的Km分别为(0.681 6±0.164 2) μmol/L和(3.317 0±0.871 4) μmol/L。BglRBS_26具有较好的酸碱耐受性,在pH 5.0–6.0下处理1 h,剩余酶活大于110%;pH 7.0-8.0范围内,剩余酶活仍然保持在100%以上。此外,蔗糖对BglRBS_26和BglRBS_9有不同程度的激活,当反应体系中加入20%(质量体积分数)蔗糖,BglRBS_26酶活力可提高至140%;10%(质量体积分数)蔗糖可将BglRBS_9酶活力提高至180%。此外,BglRBS_26具有较好的NaCl耐受性和稳定性,其在37 ℃、2.5 mol/L的NaCl下处理1 h后保留80%活性。[结论] 从滇金丝猴粪便微生物宏基因组中获得2个新型β-葡萄糖苷酶基因BglRBS_26BglRBS_9,并成功在大肠杆菌BL21(DE3)中表达。BglRBS_26和BglRBS_9具有较好的pH稳定性和蔗糖耐受性,在食品、发酵等行业具有潜在应用价值。

    Abstract:

    [Background] β-glucosidase is an important class of cellulolytic enzymes. At present, β-glucosidase (Bgl) derived from cultivable microorganisms has the problems of poor thermal stability and acid-base stability and a narrow range of action. [Objective] Discover new β-glucoside genes from the fecal microbial metagenomics of Rhinopithecus bieti, express heterologously and study its enzymatic properties, and provide new enzyme resources for food and other fields. [Methods] Starting from the fecal microbial metagenome, the β-glucosidase genes BglRBS_26 and BglRBS_9 were amplified and heterologously expressed, and the enzymatic properties were studied. [Results] The GH1 family recombinant β-glucosidase BglRBS_26 and BglRBS_9 were obtained, with molecular weights of 60 kD and 50 kD, respectively. The optimal conditions for BglRBS_26 are pH 6.0 and 45 ℃; the optimal conditions for BglRBS_9 are pH 5.0 and 40 ℃. The Km of BglRBS_26 and BglRBS_9 are (0.681 6±0.164 2) μmol/L and (3.317 0±0.871 4) μmol/L, respectively. BglRBS_26 has good acid-base tolerance. After treatment at pH 5.0–6.0 for 1 h, the remaining enzyme activity is greater than 110%; in the range of pH 7.0–8.0, the remaining enzyme activity remains above 100%. In addition, sucrose can activate BglRBS_26 and BglRBS_9 to varying degrees. When 20% (M/V) sucrose is added to the reaction system, the enzyme activity of BglRBS_26 can be increased to 140%; 10% (M/V) sucrose can increase the enzyme activity of BglRBS_9 to 180%. In addition, BglRBS_26 has better NaCl tolerance and stability. It retains 80% enzyme activity after being treated at 37 ℃ and 2.5 mol/L NaCl for 1 h. [Conclusion] In this study, two novel β-glucosidase genes BglRBS_26 and BglRBS_9 were obtained from the R. bieti fecal microbial metagenome, and they were successfully expressed in E. coli BL21(DE3). BglRBS_26 and BglRBS_9 have good pH stability and sucrose tolerance, making them have potential applications in food, fermentation and other industries.

    参考文献
    [1] Duan XY. Functional sites analysis for typical cellulase active site architecture[D]. Ji'nan:Master's Thesis of Shandong University, 2013(in Chinese)段晓云. 代表性纤维素酶家族活性架构的功能位点分析[D]. 济南:山东大学硕士学位论文, 2013
    [2] Semêdo LTAS, Gomes RC, Bon EPS, Soares RMA, Linhares LF, Coelho RRR. Endocellulase and exocellulase activities of two Streptomyces strains isolated from a forest soil[J]. Applied Biochemistry and Biotechnology, 2000, 84/86(1/9):267-276
    [3] Pan LH, Luo JP. Advance in research and application of β-D-glucosidase[J]. Food Science, 2006, 27(12):803-807(in Chinese)潘利华, 罗建平. β-葡萄糖苷酶的研究及应用进展[J]. 食品科学, 2006, 27(12):803-807
    [4] Liu XZ, Zhang YL, Li H, Li YF, Yu ZH, Liu XH, Huang MZ. Research progress on β-glucosidase in alcoholic drink-brewing[J]. China Brewing, 2020, 39(6):8-12(in Chinese)刘晓柱, 张远林, 黎华, 李银凤, 于志海, 刘晓辉, 黄名正. β-葡萄糖苷酶在酒类酿造中研究进展[J]. 中国酿造, 2020, 39(6):8-12
    [5] Song HY. Screening, identification of Mongolian horse source cellulose-decomposing strains and cloning and expression of cellulase gene[D]. Hohhot:Master's Thesis of Inner Mongolia Agricultural University, 2018(in Chinese)宋海燕. 蒙古马源纤维素分解菌的筛选鉴定及纤维素酶基因的克隆与表达[D]. 呼和浩特:内蒙古农业大学硕士学位论文, 2018
    [6] He J. A study on the gut microbiome and cellulolytic bacterium in Bactrian camels[D]. Hohhot:Doctoral Dissertation of Inner Mongolia Agricultural University, 2019(in Chinese)何静. 双峰驼肠道微生态特征及纤维素分解菌的研究[D]. 呼和浩特:内蒙古农业大学博士学位论文, 2019
    [7] Liang TY. Study on gastrointestinal tract mucosal morphology, enzyme activity and microflora of donkeys[D]. Lanzhou:Master's Thesis of Gansu Agricultural University, 2019(in Chinese)梁婷玉. 驴胃肠道组织形态、酶活及微生物区系研究[D]. 兰州:甘肃农业大学硕士学位论文, 2019
    [8] Zhou JP. Preliminary study on cellulases and hemicellulases from symbiotic bacteria harbored in the gut of Batocera horsfieldi larvae[D]. Beijing:Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2010(in Chinese)周峻沛. 云斑天牛胃肠道内共生细菌来源的纤维素酶和半纤维素酶的初步研究[D]. 北京:中国农业科学院博士学位论文, 2010
    [9] Li J, Zeng Y, Zhang MM, Bai FW, Zhao XQ. Disrupting cell wall protein encoding gene CWP2 enhances extracellular β-glucosidase activity by recombinant Saccharomyces cerevisiae[J]. Microbiology China, 2020, 47(3):681-690(in Chinese)李洁, 曾钰, 张明明, 白凤武, 赵心清. 破坏细胞壁蛋白CWP2基因提高重组酿酒酵母β-葡萄糖苷酶胞外酶活[J]. 微生物学通报, 2020, 47(3):681-690
    [10] Abdella A, El-Baz AF, Ibrahim IA, Mahrous EE, Yang ST. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122β-glucosidase enzyme[J]. Natural Product Research, 2018, 32(20):2382-2391
    [11] Ahmed SS, Akhter M, Sajjad M, Gul R, Khurshid S. Soluble production, characterization, and structural aesthetics of an industrially important thermostable β-glucosidase from Clostridium thermocellum in Escherichia coli[J]. BioMed Research International, 2019, 2019:9308593
    [12] Raza A, Pothula R, Abdelgaffar H, Bashir S, Jurat-Fuentes JL. Identification and functional characterization of a β-glucosidase from Bacillus tequelensis BD69 expressed in bacterial and yeast heterologous systems[J]. PeerJ, 2020, 8:e8792
    [13] Smekenov I, Bakhtambayeva M, Bissenbayev K, Saparbayev M, Taipakova S, Bissenbaev AK. Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains[J]. Brazilian Journal of Microbiology, 2020, 51(1):107-123
    [14] Volkov PV, Rozhkova AM, Zorov IN, Sinitsyn AP. Cloning, purification and study of recombinant GH3 family β-glucosidase from Penicillium verruculosum[J]. Biochimie, 2020, 168:231-240
    [15] Feng LY, He PH, Li CQ, Zhang HW, Xing SQ, Chen CC. Screening of Ginkgo-flavonoids-hydrolyzing microbial β-glucosidase from traditional fermented soybean in Guizhou[J]. Acta Microbiologica Sinica, 2020, 60(2):320-332(in Chinese)冯伦元, 何腊平, 李翠芹, 张宏文, 邢书奇, 陈翠翠. 贵州传统发酵豆制品中水解银杏黄酮苷的微生物β-葡萄糖苷酶筛选[J]. 微生物学报, 2020, 60(2):320-332
    [16] Xie YF, Han XM, Lu FP. Expression, purification and enzymatic properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5):72-79(in Chinese)谢玉锋, 韩雪梅, 路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究[J]. 中国生物工程杂志, 2019, 39(5):72-79
    [17] Streit WR, Schmitz RA. Metagenomics:the key to the uncultured microbes[J]. Current Opinion in Microbiology, 2004, 7(5):492-498
    [18] Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry & Biology, 1998, 5(10):R245-R249
    [19] Yan B, Hong K, Xu Y, Ma C. Metagenome cloning:a new approach for novel microbial bioactive compounds discovery[J]. Microbiology, 2005, 32(1):113-117(in Chinese)阎冰, 洪葵, 许云, 马超. 宏基因组克隆:微生物活性物质筛选的新途径[J]. 微生物学通报, 2005, 32(1):113-117
    [20] Wang QF, Qian CL, Zhang XZ, Liu N, Yan X, Zhou ZH. Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut[J]. Enzyme and Microbial Technology, 2012, 51(6/7):319-324
    [21] De Fátima Alves L, Meleiro LP, Silva RN, Westmann CA, Guazzaroni ME. Novel ethanol- and 5-hydroxymethyl furfural-stimulated β-glucosidase retrieved from a Brazilian secondary Atlantic forest soil metagenome[J]. Frontiers in Microbiology, 2018, 9:2556
    [22] Matsuzawa T, Yaoi K. Screening, identification, and characterization of a novel saccharide-stimulated β-glycosidase from a soil metagenomic library[J]. Applied Microbiology and Biotechnology, 2017, 101(2):633-646
    [23] Li YD, Liu N, Yang H, Zhao F, Yu Y, Tian Y, Lu XY. Cloning and characterization of a new β-glucosidase from a metagenomic library of Rumen of cattle feeding with Miscanthus sinensis[J]. BMC Biotechnology, 2014, 14(1):85
    [24] Zhang L, Fu Q, Li WP, Wang BW, Yin XY, Liu SY, Xu ZN, Niu QH. Identification and characterization of a novel β-glucosidase via metagenomic analysis of Bursaphelenchus xylophilus and its microbial flora[J]. Scientific Reports, 2017, 7:14850
    [25] Toyama D, De Morais MAB, Ramos FC, Zanphorlin LM, Tonoli CCC, Balula AF, De Miranda FP, Almeida VM, Marana SR, Ruller R, et al. A novel β-glucosidase isolated from the microbial metagenome of Lake Poraquê (Amazon, Brazil)[J]. Biochimica et Biophysica Acta:BBA-Proteins and Proteomics, 2018, 1866(4):569-579
    [26] Matsuzawa T, Jo T, Uchiyama T, Manninen JA, Arakawa T, Miyazaki K, Fushinobu S, Yaoi K. Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic β-glucosidase Td2F2[J]. The FEBS Journal, 2016, 283(12):2340-2353
    [27] Uchiyama T, Yaoi K, Miyazaki K. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome[J]. Frontiers in Microbiology, 2015, 6:548
    [28] Gomes-Pepe ES, Machado Sierra EG, Pereira MR, Castellane TCL, De Macedo Lemos EG. Bg10:a novel metagenomics alcohol-tolerant and glucose-stimulated GH1β-glucosidase suitable for lactose-free milk preparation[J]. PLoS One, 2016, 11(12):e0167932
    [29] Cao HF, Zhang YQ, Shi PJ, Ma R, Yang H, Xia W, Cui Y, Luo HY, Bai YG, Yao B. A highly glucose-tolerant GH1β-glucosidase with greater conversion rate of soybean isoflavones in monogastric animals[J]. Journal of Industrial Microbiology Biotechnology, 2018, 45(6):369-378
    [30] Dai LM, Deng M, Huang ZX, Wang YJ, Li JJ, Zhou JP, Mu YL, Xu B. Gene diversity of the glycosyl hydrolase family 10 xylanase in the fecal microorganism of Rhinopithecus bieti[J]. Microbiology China, 2016, 43(1):44-50(in Chinese)戴利铭, 邓梦, 黄遵锡, 王余娇, 李俊俊, 周峻沛, 慕跃林, 许波. 滇金丝猴粪便微生物GH10家族木聚糖酶基因多样性[J]. 微生物学通报, 2016, 43(1):44-50
    [31] Yang ZF. Characterization of chitinase and β-galactosidase in fecal microbial metagenome from Rhinopithecus bieti[D]. Kunming:Master's Thesis of Yunnan Normal University, 2018(in Chinese)杨正凤. 滇金丝猴粪便微生物宏基因组来源几丁质酶和β-半乳糖苷酶的研究[D]. 昆明:云南师范大学硕士学位论文, 2018
    [32] Zhang WH, Yang YX, Yang ZF, Huang ZX, Li JJ, Tang XH, Yang YJ, Wu Q, Mu YL, Han NY, Xu B. Expression and characterization of β-galactosidase from fecal microbes of Rhinopithecus bieti[J]. Acta Microbiologica Sinica, 2019, 59(8):1561-1575(in Chinese)张文洪, 杨雁霞, 杨正凤, 黄遵锡, 李俊俊, 唐湘华, 杨云娟, 吴倩, 慕跃林, 韩楠玉, 许波. 滇金丝猴粪便微生物来源的β-半乳糖苷酶基因的表达及酶学性质[J]. 微生物学报, 2019, 59(8):1561-1575
    [33] Yang YX, Yang YJ, Fan Q, Huang ZX, Li JJ, Wu Q, Tang XH, Ding JM, Han NY, Xu B. Molecular and biochemical characterization of salt-tolerant trehalose-6-phosphate hydrolases identified by screening and sequencing salt-tolerant clones from the metagenomic library of the gastrointestinal tract[J]. Frontiers in Microbiology, 2020, 11:1466
    [34] Lu J, Lu WW, Li WL, Guo XM, Du LQ, Wei YT, Huang RB. Cloning, expression and characterization of novel β-glucosidase from soil metagenomic library[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(12):2589-2597(in Chinese)陆坚, 路卫卫, 李伟亮, 郭晓敏, 杜丽琴, 韦宇拓, 黄日波. 高糖土壤宏基因组文库β-葡萄糖苷酶基因克隆表达及酶学性质分析[J]. 西南农业学报, 2018, 31(12):2589-2597
    [35] Ly HD, Withers SG. Mutagenesis of glycosidases[J]. Annual Review of Biochemistry, 1999, 68:487-522
    [36] Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization:fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3):506-577
    [37] Xu B, Xu WJ, Li JJ, Dai LM, Xiong CY, Tang XH, Yang YJ, Mu YL, Zhou JP, Ding JM, Wu Q, Huang ZX. et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation[J]. BMC Genomics, 2015, 16(1):174
    [38] Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production[J]. Bioresource Technology, 2013, 127:500-507
    [39] Guo H, Feng Y, Mo XC, Duan CJ, Tang JL, Feng JX. Cloning and expression of a β-glucosidase gene umcel3G from metagenome of buffalo rumen and characterization of the translated product[J]. Chinese Journal of Biotechnology, 2008, 24(2):232-238(in Chinese)郭鸿, 封毅, 莫新春, 段承杰, 唐纪良, 冯家勋. 水牛瘤胃宏基因组的一个新的β-葡萄糖苷酶基因umcel3G的克隆、表达及其表达产物的酶学特性[J]. 生物工程学报, 2008, 24(2):232-238
    [40] Del Pozo MV, Fernández-Arrojo L, Gil-Martínez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina OV, Newbold CJ, Polaina J, Ferrer M, Golyshin PN. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail[J]. Biotechnology for Biofuels, 2012, 5(1):73
    [41] Xin S. Cloning, characterization and expression of the novel cellulase genes from uncultured microorganisms[D]. Changsha:Master's Thesis of Hunan Agricultural University, 2013(in Chinese)辛盛. 未培养微生物中两个纤维素酶基因的克隆、鉴定及表达研究[D]. 长沙:湖南农业大学硕士学位论文, 2013
    [42] Xu FZ, Li BH, Li L, Ding XL. Screen and analysis of enzymic property of β-glucosidase from metagenome of goat(Capra hircus) rumen[J]. Journal of Agricultural Biotechnology, 2013, 21(11):1345-1350(in Chinese)许发芝, 李炳华, 李吕木, 丁小玲. 山羊瘤胃宏基因组文库中β-葡萄糖苷酶筛选及性质研究[J]. 农业生物技术学报, 2013, 21(11):1345-1350
    [43] Ariaeenejad S, Nooshi-Nedamani S, Rahban M, Kavousi K, Salekdeh GH. A novel high glucose-tolerant β-glucosidase:targeted computational approach for metagenomic screening[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:813
    [44] Ma SH. Isolation of a β-glucosidase gene from metagenome of rabbit cecum[D]. Chongqing:Master's Thesis of Southwest University, 2008(in Chinese)马淑华. 兔盲肠宏基因组中β-葡萄糖苷酶基因的分离研究[D]. 重庆:西南大学硕士学位论文, 2008
    [45] Ma ZG, Tang J, Ma SH, Zhang SH, Jia JJ, Li T, Zhou ZY. Gene isolation and characterization of a novel alkaline β-glucosidase with low molecular mass[J]. Science and Technology of Food Industry, 2012, 33(4):108-113(in Chinese)马振刚, 唐婧, 马淑华, 张时恒, 贾俊杰, 李田, 周泽扬. 新型碱性低分子量β-葡萄糖苷酶基因的分离与酶学性质研究[J]. 食品工业科技, 2012, 33(4):108-113
    [46] Wang A. Gene cloning and directed evolution of a novel β-glucosidase derived from metagenomic library of guts inhabiting microbes of Coptotermes fonnosanus[D]. Guangzhou:Master's Thesis of Sun Yat-sen University, 2013(in Chinese)王安. 台湾乳白蚁肠道宏基因组中新型β-葡萄糖苷酶基因的克隆及定向进化研究[D]. 广州:中山大学硕士学位论文, 2013
    [47] Zhang YQ. Metagenomic analysis of the intestinal bacteria of Reticulitermes chinensis snyder and characterization of a novel β-glucosidase[D]. Wuhan:Master's Thesis of Central China Normal University, 2014(in Chinese)张燕琼. 黑胸散白蚁肠道微生物的宏基因组学研究以及一种β-葡萄糖苷酶的特性研究[D]. 武汉:华中师范大学硕士学位论文, 2014
    [48] Zhang ML, Liu N, Qian CL, Wang QF, Wang Q, Long YH, Huang YP, Zhou ZH, Yan X. Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite:bacteroidetes from higher termites are a rich source of β-glucosidase genes[J]. Microbial Ecology, 2014, 68(2):416-425
    [49] Lima RAT, De Oliveira G, Souza AA, et al. Characterization of a novel GH3β-glucosidase from the gut metagenome of the Brazilian Cerrado termite Syntermes Wheeleri[J]. Int J Biol Macromol, 2020, 165(Pt A):822-834
    [50] Ben Hmad I, Gargouri A. Neutral and alkaline cellulases:production, engineering, and applications[J]. Journal of Basic Microbiology, 2017, 57(8):653-658
    [51] Ariaeenejad S, Nooshi-Nedamani S, Rahban M, Kavousi K, Pirbalooti AG, Mirghaderi S, Mohammadi M, Mirzaei M, Salekdeh GH. A novel high glucose-tolerant β-glucosidase:targeted computational approach for metagenomic screening[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:813
    [52] Song Y, Zhong LP, Zhang JL, Wang M. Effect of metal ions on Rhodococcus sp. nitrile hydratase activity[J]. Journal of Tianjin University of Science & Technology, 2009, 24(1):11-14,18(in Chinese)宋洋, 钟莉萍, 张锦丽, 王敏. 金属离子对红球菌腈水合酶活力的影响[J]. 天津科技大学学报, 2009, 24(1):11-14,18
    [53] Cleland WW. Dithiothreitol, a new protective reagent for SH groups[J]. Biochemistry, 1964, 3(4):480-482
    [54] Wang WW, Tang HZ, Xu P. Salt-tolerance related genes in halophilic bacteria and archaea[J]. Microbiology China, 2015, 42(3):550-558(in Chinese)王伟伟, 唐鸿志, 许平. 嗜盐菌耐盐机制相关基因的研究进展[J]. 微生物学通报, 2015, 42(3):550-558
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范琴,杨金茹,唐湘华,黄遵锡,杨云娟,吴倩,许波. 粪便微生物宏基因组来源GH1 β-葡萄糖苷酶的重组表达及酶学性质[J]. 微生物学通报, 2021, 48(12): 4581-4599

复制
分享
文章指标
  • 点击次数:551
  • 下载次数: 1000
  • HTML阅读次数: 1380
  • 引用次数: 0
历史
  • 收稿日期:2021-03-11
  • 录用日期:2021-04-29
  • 在线发布日期: 2021-12-03
文章二维码