科微学术

微生物学通报

表观遗传的化学干预对金龟子绿僵菌次生代谢产物影响的研究
作者:
基金项目:

安徽省自然科学基金(1808085MC89)


The effect of chemical intervention of epigenetics on secondary metabolites of Metarhizium anisopliae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 表观遗传酶类化学抑制剂对真菌的影响研究主要集中在新次生代谢产物挖掘方面,而对大量已知次生代谢物含量的变化却关注较少。金龟子绿僵菌是一种常用杀虫真菌,能代谢出多种已知生物活性物质,其含量可能会影响到该菌与环境间关系及利用潜力。[目的] 评估组蛋白去乙酰化酶和DNA甲基转移酶的化学抑制剂对金龟子绿僵菌代谢物安全性和可利用性的影响。[方法] 在金龟子绿僵菌培养基中添加表观遗传酶类化学抑制剂,培养一定时间后用高分辨液质联用及标准品对照方法分析次生代谢产物变化。根据差异代谢物的生物活性评估化学抑制剂的影响。[结果] 高分辨液质联用分析结果表明当抑制剂浓度达500μmol/L时,金龟子绿僵菌有16种主要次生代谢产物出现明显量的变化,包括destruxin A、A1、A2、B、B1、B2、E、E2、Ed、didesmethyldestruxin C、dihydrodestruxin A、desmethyldestruxin B、12-hydroxyovalicin、subglutinol C、fungerin和ustilagic Acid C。其中,丁酸钠处理可使15种主要代谢物含量升高。苯甲酰胺可使12种主要代谢物含量升高。伏立诺他虽然仅能使10种主要代谢物含量升高,但部分代谢物的升高幅度明显高于前两者。2种DNA甲基转移酶抑制剂可使金龟子绿僵菌代谢物中绿僵菌素类代谢物含量普遍下降。[结论] 组蛋白去乙酰化酶抑制剂可引起金龟子绿僵菌主要代谢物含量普遍升高,而DNA甲基转移酶抑制剂使金龟子绿僵菌的绿僵菌素含量普遍下降。由于变化的代谢物都具有显著的杀虫、免疫抑制或抗菌抗癌等生物活性,因此上述化学抑制剂可增强或降低金龟子绿僵菌对环境中昆虫毒性,同时也增加或降低其代谢物利用潜力。另外,subglutinol C、fungerin和ustilagic Acid C是首次在金龟子绿僵菌中被发现。

    Abstract:

    [Background] Studies about effects of epigenetic enzyme chemical inhibitors on metabolites of fungi mainly focus on new metabolites mining while content change of large number of known metabolites are less concerned. Metarhizium anisopliae is a common insecticidal fungus which can synthetize many known bioactive metabolites. Content variation of the metabolites can possibly affect the relationship between the fungus and the environment and its utilization potential.[Objective] To assess the effects of histone deacetylase and DNA methylase inhibitors on the safety and availability of metabolites of M. anisopliae. [Methods] Chemical inhibitors of epigenetic enzyme were added in medium of M. anisopliae. After a period of cultivation the metabolic changes were analyzed with high-performance liquid chromatography (HPLC) combined with high-resolution mass spectrometry (HRMS) and with some standards comparison. The effects of the inhibitors were evaluated by the bioactivities of the changed metabolites. [Results] Results of HPLC-HRMS showed that the content of 16 main metabolites of M. anisopliae changed significantly while the concentration of the inhibitors reached 500 μmol/L. The changed metabolites included destruxin A, A1, A2, B, B1, B2, E, E2, Ed, didesmethyldestruxin C, dihydrodestruxin A, desmethyldestruxin B, 12-hydroxyovalicin, subglutinol C, fungerin and ustilagic acid C. Sodium butyrate can increase 15 of the main metabolites production, and benzamide can increase 12 of the main metabolites production. Despite that SAHA can only increase 10 of the main metabolites production, some of the increased levels were much higher than the two formers. All the destruxins were decreased in the DNA methylase inhibitors treated M. anisopliae. [Conclusion] Chemical inhibitors of histone deacetylase can increase the contents of the main metabolites of M. anisopliae while inhibitors of DNA methylase can decrease all the destruxins in the fungus. Because of that all the main variated metabolites possess insecticidal, immunosuppressive, antibacterial, anti-cancer or other biological activities, the above inhibitors can strengthen or weaken the toxicity of the fungus against insects in the environment and increase or decrease metabolic utilization value of the fungus. Additionally, subglutinol C, fungerin and ustilagic acid C were identified for the first time from M. anisopliae.

    参考文献
    [1] Fan A, Mi W, Liu Z, Zeng G, Zhang P, Hu Y, Fang W, Yin WB. Deletion of a histone acetyltransferase leads to the pleiotropic activation of natural products in Metarhizium robertsii[J]. Organic Letters, 2017, 19(7):1686-1689
    [2] Chung YM, El-Shazly M, Chuang DW, Hwang TL, Asai T, Oshima Y, Ashour AL, Chang FR. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria feline[J]. Journal of Natural Products, 2013, 76(7):1260-1266
    [3] Sun J, Takayoshi A, Noguchi H, Abe I. Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L.[J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(20):6397-6400
    [4] Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wagele H. Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(9):1199-1213
    [5] Yakasai A, Davison J, Wasil Z, Laura MH,Craig PB, Colin ML, Andrew M. Nongenetic reprogramming of a fungal highly reducing polyketide synthase[J]. Journal of the American Chemical Society, 2011, 133(28):10990-10998
    [6] Khan AA, Bacha N, Ahmad B, Bakht J, Ali J. Synthesis of secondary metabolites by Cladosporium resinae (nrl-6437) under different growth media and chemical inducers and their pharmaceutical activity[J]. Pakistan Journal of Pharmaceutical Sciences, 2017, 30(5):1617-1624
    [7] Williams R, Henrikson J, Hoover A, Lee AE, Cichewicz RH. Epigenetic remodeling of the fungal secondary metabolome[J]. Organic & Biomolecular Chemistry, 2008, 6(11):1895-1897
    [8] Asai T, Yamamoto T, Chung YM, Chang FR, Wu RC, Yamashita K. Aromatic polyketide glycosides from an entomopathogenic fungus, Cordyceps indigotica[J]. Tetrahedron Letters, 2012, 53(3):277-280
    [9] Bergmann S, Schumann J, Scherlach K, Corinna L, Axel BA, Hertweck C. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans[J]. Nature Chemical Biology, 2007, 3(4):213-217
    [10] Qadri M, Nalli Y, Jain SK, Chaubey A, Ali A, Strobel GA. An insight into the secondary metabolism of Muscodor yucatanensis:small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte[J]. Microbial Ecology, 2017, 73(4):954-965
    [11] Wang X. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum[J]. Journal of Natural Products, 2016, 73(5):942-948
    [12] Yang XL, Huang L, Ruan XL. Epigenetic modifiers alter the secondary metabolite composition of a plant endophytic fungus, Pestalotiopsis crassiuscula obtained from the leaves of Fragaria chiloensis[J]. Journal of Asian Natural Products Research, 2014, 16(4):412-417
    [13] Savickiene J, Treigyte G, Jazdauskaite A, Borutinskaite V, Viktorija N. DNA methyltransferase inhibitor rg108 and histone deacetylase inhibitors cooperate to enhance nb4 cell differentiation and e-cadherin re-expression by chromatin remodelling[J]. Cell Biology International, 2012, 36(11):1067-1078
    [14] Asai T, Chung YM, Sakurai H, Ozeki T, Chang FR, Yamashita K. Tenuipyrone, a novel skeletal polyketide from the entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifiers[J]. Organic Letters, 2012, 14(2):513-515
    [15] Liu BL, Tzeng YM. Development and applications of destruxins:a review[J]. Biotechnology Advances, 2012, 30(6):1242-1254
    [16] Zhao P, Xue Y, Li X, Zu X, Zhao Z, Quan C, Gao W, Feng S. Fungi-derived lipopeptide antibiotics developed since 2000[J]. Peptides, 2019, 113:52-65
    [17] Zhao HB. Research progress on the effect of sodium butyrate on poultry intestinal health[J]. Feed Research, 2020, 8:120-123(in Chinese)赵怀宝. 丁酸钠对家禽肠道健康影响的研究进展[J]. 饲料研究, 2020, 8:120-123
    [18] Sonia F, Nicola V, Matteo C, Andrea B, Chiara R, Daniel P, Barbara P, Greta L, Carla M, Renata D, et al. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease[J]. Neurogastroenterology & Motility, 2020, 32(10):e13914
    [19] Deng X, Wang N, Meng L, Zhou S, Huang J, Xing J, He L, Jiang W, Li Q. Optimization of the benzamide fragment targeting the S2' site lead stopotent dipeptidylpeptidase-IV inhibitors[J]. Bioorganic Chemistry, 2020, 94:e103366
    [20] Straniero V, Suigo L, Casiraghi A, Sebastián-Pérez V, Hrast M, Zanotto C, Zdovc I, Morghen CD, Radaelli A, Valoti E. Benzamide derivatives targeting the cell division protein FtsZ:modifications of the linker and the benzodioxane scaffold and their effects on antimicrobial activity[J]. The Journal of Antibiotics, 2020, 9(4):e9040160
    [21] Wang XR, Yang X, Wang Y, Wu XH, Tang M, Luo CL. Inducing apoptosis of bladder cancer cell T24 by 5-azacytidine combine with adenovirous hepa CAM via inhibiting p-AKT[J]. Journal of Chongqing Medical University, 2014, 39(6):762-767(in Chinese)王晓荣, 杨雪, 王胤, 吴小侯,唐敏,罗春丽. 5-氮杂胞嘧啶核苷联合hepaCAM腺病毒通过抑制p-AKT诱导膀胱癌细胞T24凋亡[J]. 重庆医科大学学报, 2014, 39(6):762-767
    [22] Fang ZX, Huang ZC. Effects of 5-Aza-2'-deoxycytidine on proliferation of human gastric cancer BCG-823 cells and the expression of HOXA5 gene[J]. Journal of Chinese Physician, 2016, 12:1825-1828(in Chinese)房志学, 黄忠诚. 5-氮杂-2'-脱氧胞苷对人胃癌BCG-823细胞系增殖及HOXA5基因表达的影响[J]. 中国医师杂志, 2016, 12:1825-1828
    [23] Ammanamanchi S, Brattain MG. 5-azacytidine and 5-aza-2[prime] -deoxycytidine as inhibitors of DNA methylation:mechanistic studies and their implications for cancer therapy[J]. Oncogene, 2002, 21(35):5483-5495
    [24] Taylor & Francis Group, Dictionary of Natural Products 29.1[M]. CRC Press, Abingdon, England, 2020
    [25] Taibon J, Sturm S, Seger C, Sonja, Parth M, Strasser H, Stuppner H. Development of a fast and selective UHPLC-DAD-QTOF-MS/MS method for the qualitative and quantitative assessment of destruxin profiles[J]. Analytical and Bioanalytical Chemistry, 2014, 406(29):7623-7632
    [26] Peng GX, Zhang SL, Xia YX. Metarhizium anisopliae CQMa421 and its application status[J]. Chinese Journal of Biological Control, 2020, 36(6):850-857彭国雄, 张淑玲, 夏玉先. 金龟子绿僵菌CQMa421农药及应用情况[J]. 中国生物防治学报, 2020, 36(6):850-857
    [27] Mondo SJ, Dannebaum RO, Kuo RC, Louie KB, Grigoriev IV. Widespread adenine N6-methylation of active genes in fungi[J]. Nature Genetics, 2017, 49(6):964-968
    [28] Kuboki H, Tsuchida T, Wakazono K, Isshiki K, Kumagai H, Yoshioka T. Mer-f3, 12-hydroxy-ovalicin, produced by Metarrhizium sp. f3[J]. The Journal of Antibiotics, 1999, 52(6):590-593
    [29] Koizumi Y, Arai M, Tomada H, Omura I. Fungerin, a fungal alkaloid, arrests the cell cycle in M phase by inhibition of microtubule polymerization[J]. The Journal of Antibiotics, 2004, 57(7):415-420
    [30] Loutelier C, Cherton JC, Lange C, Traris M, Vey A. Studies on the dynamics of the production of destruxins by Metarhizium anisopliae direct high-performance liquid chromatographic and fast atom bombardment mass spectrometric analysis correlated with biological activity tests[J]. Journal of Chromatography A, 1996, 738:181-189
    [31] Kato H, Tsunematsu Y, Yamamoto T, Namiki T, Kishimoto S, Noguchi H, Watanabe K. New natural products isolated from Metarhizium robertsii ARSEF 23 by chemical screening and identification of the gene cluster through engineered biosynthesis in Aspergillus nidulans A1145[J]. The Journal of Antibiotics, 2016, 69:561-566
    [32] Yang XL, Awakawa T, Wakimoto T, Abe I. Induced production of the novel glycolipid ustilagic acid C in the plant pathogen Ustilago maydis[J]. Tetrahedron Letters, 2013, 54:3655-3657
    [33] Pais M, Das BC, Ferron P. Depsipeptides from Metarhizium anisopliae[J]. Phytochemistry, 1981, 20:715-723
    [34] Przybyla D, Nubbemeyer U. 4,5-Disubstituted 1-methylimidazoles via cyclization of defined α-aminoketones:synthesis of fungerin and analogues I[J]. Synthesis, 2017, 49(4):770-774
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄永芳,陈元元,刘庆荣,尉杰,赵铖,陆瑞利,胡丰林. 表观遗传的化学干预对金龟子绿僵菌次生代谢产物影响的研究[J]. 微生物学通报, 2021, 48(11): 4221-4231

复制
分享
文章指标
  • 点击次数:480
  • 下载次数: 1099
  • HTML阅读次数: 803
  • 引用次数: 0
历史
  • 收稿日期:2021-01-20
  • 录用日期:2021-02-23
  • 在线发布日期: 2021-11-11
文章二维码