科微学术

微生物学通报

谷物蛋白对白酒发酵过程中微生物群落及其代谢多样性的调控
作者:
基金项目:

国家重点研发计划(2018YFC1604103)


Regulation of cereal protein on the microbial and metabolic diversity during the Chinese liquor fermentation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 在白酒发酵过程中,原料中的谷物蛋白可为微生物的生长提供氮源等营养物质,进而形成多种代谢产物。谷物蛋白可分为清蛋白、球蛋白、醇溶蛋白和谷蛋白。然而,谷物蛋白对微生物多样性及其代谢产物多样性的调控尚不明确。[目的] 揭示白酒发酵过程中与微生物多样性及其代谢产物多样性显著相关的关键谷物蛋白种类及其调控作用。[方法] 通过Osborne法测定不同品种高粱中谷物蛋白的组成;采用多组学联用技术解析4种高粱在发酵过程中的微生物菌群多样性及代谢产物多样性;通过模拟发酵揭示原料中影响微生物群落及其代谢多样性的关键蛋白。[结果] 4种高粱中的谷物蛋白组成存在显著差异(ANOSIM:R=0.85,P=0.001);4种高粱在发酵第5天时,S4高粱的细菌多样性显著(P<0.05)高于其他3种高粱,S3高粱中微生物的代谢产物多样性显著(P<0.05)高于其他3种高粱;清蛋白和球蛋白含量与发酵第5天的优势细菌多样性(R2=0.34,P<0.05;R2=0.58,P<0.05)和代谢产物多样性呈显著正相关(R2=0.58,P<0.05;R2=0.36,P<0.05),被定义为关键蛋白;模拟发酵实验验证了优势细菌多样性和代谢产物多样性可随着2种关键蛋白即清蛋白和球蛋白含量的升高而升高。当清蛋白含量在3.0 g/L时,优势细菌多样性及代谢产物多样性可分别达到0.72和0.65;当球蛋白含量在3.0 g/L时,优势细菌多样性及代谢产物多样性可分别达到0.66和0.81。[结论] 研究揭示了酿造原料中的清蛋白和球蛋白对发酵过程中细菌多样性及代谢产物多样性的调控作用,为提高白酒发酵的可控性及质量提供了依据。

    Abstract:

    [Background] Cereal protein of raw material can provide nutrients such as nitrogen sources for the growth of microbial community, and then form a variety of metabolites during Chinese liquor fermentation. Cereal protein includes albumin, globulin, kafirin and gluten. However, the regulation of cereal protein on microbial diversity and metabolic diversity is still unclear. [Objective] This study aimed to reveal the key cereal protein that are significantly related to microbial diversity, and the effect of their regulation on microbial diversity and metabolic diversity. [Methods] The cereal protein was determined by Osborne's method; Identification of microbial diversity and metabolic diversity via HS-SPME-GC-MS and high-throughput sequencing during fermentation with 4 cultivars of sorghum. The key cereal protein was verified by simulated fermentation in vitro. [Results] The cereal protein of 4 sorghum was significant difference (ANOSIM:R=0.85, P=0.001); The bacterial diversity of sorghum S4 was significantly higher than others (P<0.05) at day 5 of fermentation with 4 sorghum; The metabolic diversity of sorghum S3 was significantly higher than others (P<0.05) at day 5 of fermentation with 4 sorghum. The contents of albumin and globulin were significantly correlated with the dominant bacterial diversity (R2=0.34, P<0.05; R2=0.58, P<0.05) and metabolic diversity (R2=0.58, P<0.05; R2=0.36, P<0.05) at day 5 of fermentation. Thus, they are defined as the key cereal protein; In vitro validation confirmed that the dominant bacterial diversity and metabolic diversity would increase with the increase of albumin and globulin content. When the albumin content is 3.0 g/L, the dominant bacteria diversity and metabolite diversity are 0.72 and 0.65, respectively; when the globulin content is 3.0 g/L, the dominant bacterial diversity and metabolite diversity are 0.66 and 0.81, respectively. [Conclusion] The study revealed the regulation of albumin and globulin in raw material on the diversity of bacteria and metabolites, and providing a new perspective for improving the controllability and quality of Chinese liquor fermentation.

    参考文献
    [1] Jin GY, Zhu Y, Xu Y. Mystery behind Chinese liquor fermentation[J]. Trends in Food Science & Technology, 2017, 63:18-28
    [2] Wu Q, Zhu Y, Fang C, Wijffels RH, Xu Y. Can we control microbiota in spontaneous food fermentation?-Chinese liquor as a case example[J]. Trends in Food Science & Technology, 2021, 110:321-331
    [3] Wang YQ, Huang HQ, Wang SL, Mu XQ, Li SW, Qi WJ, Kong LW, Wu Q, Feng SB, Xu Y. Effects of amino acids on microbial community succession and flavor metabolism in highland barley Baijiu fermentation[J]. Microbiology China, 2021, 48(2):414-425(in Chinese)王宇乔, 黄和强, 王石垒, 穆晓清, 李善文, 祁万军, 孔令武, 吴群, 冯声宝, 徐岩. 氨基酸对青稞酒酿造微生物群落演替及风味代谢的驱动[J]. 微生物学通报, 2021, 48(2):414-425
    [4] Seguinot P, Bloem A, Brial P, Meudec E, Ortiz-Julien A, Camarasa C. Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains[J]. International Journal of Food Microbiology, 2020, 316:108441
    [5] Liu CC, Feng SB, Wu Q, Huang HQ, Chen ZX, Li SW, Xu Y. Raw material regulates flavor formation via driving microbiota in Chinese liquor fermentation[J]. Frontiers in Microbiology, 2019, 10:1520
    [6] Yang L, Fan WL, Xu Y. Metaproteomics insights into traditional fermented foods and beverages[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(5):2506-2529
    [7] Niccum BA, Kastman EK, Kfoury N, Jr AR, Wolfe BE. Strain-level diversity impacts cheese rind microbiome assembly and function[J] . mSystems, 2020, 5(3):e00149-20
    [8] Yang C, Zhang W, Liu RH, Li Q, Li BB, Wang SF, Song CJ, Qiao CL, Mulchandani A. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants[J]. Environmental Science & Technology, 2011, 45(17):7408-7415
    [9] Johnson DR, Lee TK, Park J, Fenner K, Helbling DE. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability[J]. Environmental Microbiology, 2015, 17(12):4851-4860
    [10] Wang SL, Xiong W, Wang YQ, Nie Y, Wu Q, Xu Y, Geisen S. Temperature-induced annual variation in microbial community changes and resulting metabolome shifts in a controlled fermentation system[J]. mSystems, 2020, 5(4):e00555-20
    [11] Wan WJ, Tan JD, Wang Y, Qin Y, He HM, Wu HQ, Zuo WL, He DL. Responses of the rhizosphere bacterial community in acidic crop soil to pH:changes in diversity, composition, interaction, and function[J]. Science of the Total Environment, 2020, 700:134418
    [12] Tan YW, Zhong HP, Zhao D, Du H, Xu Y. Succession rate of microbial community causes flavor difference in strong-aroma Baijiu making process[J]. International Journal of Food Microbiology, 2019, 311:108350
    [13] Li S, Li P, Feng F, Luo LX. Microbial diversity and their roles in the vinegar fermentation process[J]. Applied Microbiology and Biotechnology, 2015, 99(12):4997-5024
    [14] Liang R, Huang J, Wu XM, Fan J, Xu Y, Wu CD, Jin Y, Zhou RQ. Effect of raw material and starters on the metabolite constituents and microbial community diversity of fermented soy sauce[J]. Journal of the Science of Food and Agriculture, 2019, 99(13):5687-5695
    [15] Houngbédji M, Johansen P, Padonou SW, Akissoé N, Arneborg N, Nielsen DS, Hounhouigan DJ, Jespersen L. Occurrence of lactic acid bacteria and yeasts at species and strain level during spontaneous fermentation of mawè, a cereal dough produced in West Africa[J]. Food Microbiology, 2018, 76:267-278
    [16] Ren GD, Meng TZ, Ma Y. Sugars altered fungal community composition and caused high network complexity in a Fusarium wilt pathogen-infested soil[J]. Biology and Fertility of Soils, 2020, 56(3):395-409
    [17] Wang SL, Wu Q, Nie Y, Wu JF, Xu Y. Construction of synthetic microbiota for reproducible flavor compound metabolism in Chinese light-aroma-type liquor produced by solid-state fermentation[J]. Applied and Environmental Microbiology, 2019, 85(10):e03090-e03018
    [18] De Filippis F, Genovese A, Ferranti P, Gilbert JA, Ercolini D. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate[J]. Scientific Reports, 2016, 6:21871
    [19] Hong XT, Chen J, Liu L, Wu H, Tan HQ, Xie GF, Xu Q, Zou HJ, Yu WJ, Wang L, et al. Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese rice wine[J]. Scientific Reports, 2016, 6:26621
    [20] Ren GD, Ren WJ, Teng Y, Li ZG. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil[J]. Frontiers in Microbiology, 2015, 6:22
    [21] Le晭?浳甠汌瑎椬瀠汆敵?獴慨捯捲桰慥爠楒晒礬椠湔杲?数湬穥祴浴攠獅?漬渠?慯汥捳潣桨漠汌楆捗?映敒牥浴敨湩瑮慫瑩楮潧渠?晩潣牲??桩楡湬攠獤敩?扥慲楳橩楴畹?灡牮潡摬畹捳瑩楳漠湩孮?嵴???灨灩汧楨攠摴?慲湯摵??湰癵楴爠潳湥浱敵湥瑮慣汩??椠捥牲潡扛楊潝氮漠杊祯???ち??????????敢どはぬ????ち?戠牍?孴?は嵤??甠′到???圠甸?儨??堺甴′夭???桢楲渾敛猲攲?氠楗煡畮潧爠?昮攠牅浦敦湥瑣慴瑳椠潯湦?椼摩放湂瑡楣晩楬捬慵瑳椠潬湩?潨晥?歩敦祯?晭汩慳瘼漯物?瀠物潮摯畣捵楬湡杴??楮??慮挠瑴潨扥愠捭楩汣汲畯獢??楬??獯灭灭??扩祴?焠畳慴湲瑵楣瑴慵瑲楥瘠敡?灤爠潭晥楴污楢湯杬?睳業琠桤?楲湩摮楧朠敳湴潲畯獮?椠湦瑬敡牶湯慲汥?猠瑬慩湱摵慯牲搠獢孲?嵷???瀠灰汲楯散摥?慳湛摄??渠癗極牸潩渺浍敡湳瑴慥汲??椠捔牨潥扳楩潳氠潯杦礠???の?の?????????敳どぴ????日??戨物?嬠??嵩?呥敳牥爩憋摏攮?丰???楆狌愺‖?敓?例牽摒畿?溮琟楩沤搽旓?憌?刢???敛瑄敝爮洠槠渡愺瑟楗漧湦?濫晦?璺梇攬?攲猰猱攷渼瑢楲愾汛′渳畝琠片楲敥湧瑯?特攠煃畡楰牯敲浡敳湯琠獊?漠晋?督楺湹敮?牫敩氠慊琬攠摓?扯慭换瑡敵牧楨愠?昬爠潂浩?瑴桩敮?来敲渠敋爬愠??楳?佭敡湮漠捆潄挬挠畃獯??楥??慯渠摅??椠??慥捲瑥潲戠慎挬椠汐汥甦獮??楬?孥?嵡???測琠敇牯湯慤瑲楩潣湨愠汊??漠畇牯湲慤汯?漠晊??漠潥摴??楬挮爠潑扉楉潍汅漠条祬???び?????????????????-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336
    [24] Chen HR, Wu Q, Xu Y. Study on preparation and physicochemical properties of brewing sorghum protein[EB/OL]. Beijing:Sciencepaper Online, 2016, http://www.paper.edu.cn/releasepaper/content/201604-102 (in Chinese)陈华蓉, 吴群, 徐岩. 酿酒高粱蛋白质的分类组成及相关特性研究[EB/OL] . 北京:中国科技论文在线, 2016, http://www.paper.edu.cn/releasepaper/content/201604-102
    [25] Gao WJ, Fan WL, Xu Y. Characterization of the key odorants in light aroma type Chinese liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies[J]. Journal of Agricultural and Food Chemistry, 2014, 62(25):5796-5804
    [26] Xu W, Jing X, Ma ZY, He JS. A review on the measurement of ecosystem multifunctionality[J]. Biodiversity Science, 2016, 24(1):72-84(in Chinese)徐炜, 井新, 马志远, 贺金生. 生态系统多功能性的测度方法[J]. 生物多样性, 2016, 24(1):72-84
    [27] Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1):1-10
    [28] Zhang HX, Wang L, Tan YW, Wang HY, Yang F, Chen LQ, Hao F, Lv X, Du H, Xu Y. Effect of Pichia on shaping the fermentation microbial community of sauce-flavor Baijiu[J]. International Journal of Food Microbiology, 2021, 336:108898
    [29] Wang BW, Wu Q, Xu Y, Sun BG. Synergistic effect o
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王正,王石垒,吴群,徐岩. 谷物蛋白对白酒发酵过程中微生物群落及其代谢多样性的调控[J]. 微生物学通报, 2021, 48(11): 4167-4177

复制
分享
文章指标
  • 点击次数:492
  • 下载次数: 1071
  • HTML阅读次数: 1151
  • 引用次数: 0
历史
  • 收稿日期:2021-03-08
  • 录用日期:2021-03-23
  • 在线发布日期: 2021-11-11
文章二维码