科微学术

微生物学通报

镉胁迫对2种油菜土壤真菌群落的影响
作者:
基金项目:

国家重点研发计划(2018YFD1000904);湖南省重点研发计划项目(2020NK2045)


effect of cadmium stress on the soil fungal communities of two oilseed rape species
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [背景] 人类活动引起的农田重金属污染已成为严重的环境问题。镉(Cd)是最具毒性的重金属之一,能对人体和生态系统构成威胁。[目的] 研究不同浓度镉处理对2种油菜(甘蓝型油菜和芥菜型油菜)的土壤(根际和非根际)真菌群落的影响,为镉的生物修复和健康风险评估提供理论基础。[方法] 对2种油菜土壤(根际和非根际)真菌转录间隔区(Internal Transcribed Spacer,ITS)进行高通量测序,分析镉对根际和非根际土壤真菌群落的影响。[结果] 镉胁迫改变了土壤真菌群落的组成和结构,但对2种油菜土壤真菌群落的α多样性几乎无显著影响。土壤镉浓度和生物量与2种油菜根际土壤真菌群落显著相关,芥菜型油菜非根际土壤真菌群落也与镉污染浓度显著相关。土壤真菌分子生态网络也受到镉污染的影响,甘蓝型油菜根际土壤网络稳定性降低,共生关系减少。甘蓝型油菜非根际土壤网络稳定性升高,但共生关系减少。芥菜型油菜的根际和非根际土壤的网络稳定性升高,而且共生关系增多。[结论] 镉污染会影响土壤系统中的本土真菌群落,从而可能进一步改变土壤的生态系统功能。

    Abstract:

    [Background] Heavy metal contamination of agricultural soil is an environmental problem as a result of anthropogenic activities. Cadmium (Cd), one of the most toxic heavy metals, poses health risks to both human being and the ecosystem. [Objective] Aiming at laying a theoretical basis for bioremediation and health risk assessment of Cd, we explored the effect of different levels of Cd on soil (rhizosphere and bulk soil) fungal communities of two oilseed rape species (Brassica napus and B. juncea). [Methods] Through high-throughput sequencing of fungal ribosomal internal transcribed spacer (ITS), the impact of Cd on soil fungal communities of the two species was evaluated. [Results] Cd stress changed the composition and structure of soil fungal communities, but had no significant influence on the alpha diversity of them. Soil Cd concentration and biomass were in significant correlation with the rhizosphere soil fungal communities of the two species and the fungal community of B. juncea bulk soil was significantly correlated with Cd concentration. The molecular ecological networks of soil fungal communities were also affected by Cd pollution, as manifested by the reduced stability and symbiosis of the networks for the fungal communities of B. napus rhizosphere soil, improved stability and attenuated symbiosis of the networks for the fungal communities of B. napus bulk soil, and increased stability and symbiosis of the networks for fungal communities of B. juncea rhizosphere and bulk soil. [Conclusion] Cd pollution influences the indigenous fungal community in soil, which might further change soil ecosystem functions.

    参考文献
    [1] El-Meihy RM, Abou-Aly HE, Tewfike TA, El-Alkshar EA, Youssef AM. Characterization and identification of cadmium-tolerant bacteria isolated from contaminated regions in Egypt[J]. Biocatalysis and Agricultural Biotechnology, 2019, 21:101299
    [2] Huang SH, Rao GS, Ashraf U, He LX, Zhang ZZ, Zhang HL, Mo ZW, Pan SG, Tang XR. Application of inorganic passivators reduced Cd contents in brown rice in oilseed rape-rice rotation under Cd contaminated soil[J]. Chemosphere, 2020, 259:127404
    [3] Jia RX, Ding XC, Tang DF, Wei F, Chang MM, Li ZQ, Liang ZC, Chen P. Effects of seed germination and seedling growth of two homonuclear-heterocytoplasmic kenaf hybrid cultivars under cadmium stress[J]. Journal of Southern Agriculture, 2019, 50(8):1688-1694(in Chinese)贾瑞星, 丁鑫超, 汤丹峰, 韦范, 常蒙蒙, 李增强, 梁志辰, 陈鹏. 镉对两个同核异质红麻杂交种种子萌发及幼苗生长的影响[J]. 南方农业学报, 2019, 50(8):1688-1694
    [4] Yang WT, Zhou H, Gu JF, Liao BH, Zhang J, Wu P. Application of rapeseed residue increases soil organic matter, microbial biomass, and enzyme activity and mitigates cadmium pollution risk in paddy fields[J]. Environmental Pollution, 2020, 264:114681
    [5] Kong XX, Li BZ, Yang JS. Research progress in microalgae resistance to cadmium stress[J]. Microbiology China, 2017, 44(8):1980-1987(in Chinese)孔祥雪, 李宝珍, 杨金水. 微藻去除重金属镉的抗性机理研究进展[J]. 微生物学通报, 2017, 44(8):1980-1987
    [6] Wu C, Shi LZ, Xue SG, Li WC, Jiang XX, Rajendran M, Qian ZY. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 2019, 647:1158-1168
    [7] Xia MM, He GD, Fu DS, Fu TL, Guo C, Yang SM, He TB. Effects of cadmium stress on morphology and physiology of different potato cultivars and cadmium-tolerant evaluation[J]. Seed, 2020, 39(9):41-46(in Chinese)夏蔓蔓, 何冠谛, 符东顺, 付天岭, 郭超, 杨世梅, 何腾兵. 镉胁迫对不同马铃薯品种形态和生理特性的影响及评价[J]. 种子, 2020, 39(9):41-46
    [8] Xu XH, Liu CY, Zhao XY, Li RY, Deng WJ. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.)[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(5):618-624
    [9] Nogueirol RC, Monteiro FA, De Souza Junior JC, Azevedo RA. NO3/NH4+ proportions affect cadmium bioaccumulation and tolerance of tomato[J]. Environmental Science and Pollution Research, 2018, 25(14):13916-13928
    [10] Zhang Q, Li RY, Xu XH, Xie XJ, Chambe EA. Effects of cadmium pollution in soil on growth and cadmium uptake of wheat[J]. Journal of Agricultural Resources and Environment, 2019, 36(4):522-527(in Chinese)张婍, 李仁英, 徐向华, 谢晓金, Chambe EA. 土壤镉污染对小麦生长及镉吸收的影响[J]. 农业资源与环境学报, 2019, 36(4):522-527
    [11] Wang LX, Chen H, Guo F, Zhang X, Fan ZX, Wan SB. Effects of cadmium on peanut growth and mineral nutrient uptake[J]. Journal of Agro-Environment Science, 2013, 32(6):1106-1110(in Chinese)王丽香, 陈虎, 郭峰, 张欣, 范仲学, 万书波. 镉胁迫对花生生长和矿质元素吸收的影响[J]. 农业环境科学学报, 2013, 32(6):1106-1110
    [12] Pham HN, Pham PA, Nguyen TTH, Meiffren G, Brothier E, Lamy I, Michalet S, Dijoux-Franca MG, Nazaret S. Influence of metal contamination in soil on metabolic profiles of Miscanthus x giganteus belowground parts and associated bacterial communities[J]. Applied Soil Ecology, 2018, 125:240-249
    [13] Hou DD, Wang RZ, Gao XY, Wang K, Lin Z, Ge J, Liu T, Wei S, Chen WK, Xie RH, et al. Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.)[J]. Environmental Pollution, 2018, 241:63-73
    [14] Hu L, Wang R, Liu XL, Xu B, Xie TH, Li YY, Wang MK, Wang G, Chen YH. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient[J]. Environmental Science and Pollution Research, 2018, 25(22):21671-21681
    [15] Mukhtar H, Lin CM, Wunderlich RF, Cheng LC, Ko MC, Lin YP. Climate and land cover shape the fungal community structure in topsoil[J]. Science of the Total Environment, 2021, 751:141721
    [16] Huang Q, Jiao F, Huang YM, Li N, Wang BR, Gao H, An SS. Response of soil fungal community composition and functions on the alteration of precipitation in the grassland of Loess Plateau[J]. Science of the Total Environment, 2021, 751:142273
    [17] Lin YB, Xiao W, Ye YM, Wu CF, Hu YM, Shi HK. Adaptation of soil fungi to heavy metal contamination in paddy fields-a case study in eastern China[J]. Environmental Science and Pollution Research, 2020, 27(22):27819-27830
    [18] Luo QY, Wang XJ, Lin SS, Li YY, Sun L, Jin L. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2013, 33(13):3898-3906(in Chinese)罗巧玉, 王晓娟, 林双双, 李媛媛, 孙莉, 金樑. AM真菌对重金属污染土壤生物修复的应用与机理[J]. 生态学报, 2013, 33(13):3898-3906
    [19] Khan I, Aftab M, Shakir S, Ali M, Qayyum S, Rehman MU, Haleem KS, Touseef I. Mycoremediation of heavy metal (Cd and Cr)-polluted soil through indigenous metallotolerant fungal isolates[J]. Environmental Monitoring and Assessment, 2019, 191(9):585
    [20] Nath S, Deb B, Sharma I. Isolation of toxic metal-tolerant bacteria from soil and examination of their bioaugmentation potentiality by pot studies in cadmium- and lead-contaminated soil[J]. International Microbiology, 2018, 21(1/2):35-45
    [21] Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL. Effect of heavy metals in plants of the genus Brassica[J]. International Journal of Molecular Sciences, 2015, 16(8):17975-17998
    [22] Zhang XM, Zhang XY, Zhong TY, Jiang H. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environmental Science, 2014, 35(2):692-703(in Chinese)张小敏, 张秀英, 钟太洋, 江洪. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2):692-703
    [23] Xiong J, Zou XY, Chen LL, Li SY, Zou XF, Song LQ. Screening of rapeseed genotypes with aluminum tolerance at seedling stage and evaluation of selecting indices[J]. Scientia Agricultura Sinica, 2015, 48(16):3112-3120(in Chinese)熊洁, 邹小云, 陈伦林, 李书宇, 邹晓芬, 宋来强. 油菜苗期耐铝基因型筛选和鉴定指标的研究[J]. 中国农业科学, 2015, 48(16):3112-3120
    [24] Benáková M, Ahmadi H, Dučaiová Z, Tylová E, Clemens S, Tůma J. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants[J]. Environmental Science and Pollution Research, 2017, 24(25):20705-20716
    [25] Kong X, Jin DC, Jin SL, Wang ZG, Yin HQ, Xu MY, Deng Y. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem[J]. Journal of Hazardous Materials, 2018, 353:142-150
    [26] Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963
    [27] Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998
    [28] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267
    [29] Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012, 13(1):113
    [30] Zhu CC, Li QH, Chen WS, He Y, Xiao J. Metazooplankton community structure and its relationship with environmental factors of Caohai, Guizhou Province, China[J]. Ecological Science, 2018, 37(6):131-138(in Chinese)朱冲冲, 李秋华, 陈文生, 何应, 肖晶. 贵州草海后生浮游动物群落季节动态特征及与环境因子的关系[J]. 生态科学, 2018, 37(6):131-138
    [31] Fei L, Deng JM, Qin BQ, Zhu GW, Zuo SP, Sarvala J, VentelӒ A, Kirkkala T. Phytoplankton community response to the increasing summer daily minimum temperature in Lake Pyhäjärvi, Finland[J]. Journal of Lake Sciences, 2016, 28(3):592-598(in Chinese)费磊, 邓建明, 秦伯强, 朱广伟, 左胜鹏, Jouko SARVALA, Anne-Mari VENTELӒ, Teija KIRKKALA. 夏季日最低温度升高对芬兰皮海湖浮游植物群落的影响[J]. 湖泊科学, 2016, 28(3):592-598
    [32] Paliy O, Shankar V. Application of multivariate statistical techniques in microbial ecology[J]. Molecular Ecology, 2016, 25(5):1032-1057
    [33] Qin GL, Tan JY. Mantel test and its applications in ecology[J]. Journal of Biomathematics, 2014, 29(3):507-512(in Chinese)覃光莲, 谭劲英. Mantel方法在生态学中的应用[J]. 生物数学学报, 2014, 29(3):507-512
    [34] Legendre P, Fortin MJ. Spatial pattern and ecological analysis[J]. Vegetatio, 1989, 80(2):107-138
    [35] Ramette A. Multivariate analyses in microbial ecology[J]. FEMS Microbiology Ecology, 2007, 62(2):142-160
    [36] Zheng Y, Li YY, Ding CY, Ren XM, Chen ZJ. Effects of bioenergy cropping on rhizosphere bacteria networks structure in Cd-contaminated soil[J]. Acta Scientiae Circumstantiae, 2016, 36(7):2605-2612(in Chinese)郑远, 李玉英, 丁传雨, 任学敏, 陈兆进. 能源植物修复镉污染土壤对根际细菌网络结构的影响[J]. 环境科学学报, 2016, 36(7):2605-2612
    [37] Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J. The role of microorganisms at different stages of ecosystem development for soil formation[J]. Biogeosciences, 2013, 10(6):3983-3996
    [38] Wood JL, Zhang C, Mathews ER, Tang C, Franks AE. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator[J]. Scientific Reports, 2016, 6:36067
    [39] Ye FC, Gong DF, Pang CP, Luo JL, Zeng XM, Shang CH. Analysis of fungal composition in mine-contaminated soils in Hechi city[J]. Current Microbiology, 2020, 77(10):2685-2693
    [40] Lin YB, Ye YM, Hu YM, Shi HK. The variation in microbial community structure under different heavy metal contamination levels in paddy soils[J]. Ecotoxicology and Environmental Safety, 2019, 180:557-564
    [41] Mohammad A, Mittra B. Effects of inoculation with stress-adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph. seedlings under salinity and heavy metal stress conditions[J]. Archives of Agronomy and Soil Science, 2013, 59(2):173-183
    [42] Xu YL, Seshadri B, Bolan N, Sarkar B, Ok YS, Zhang W, Rumpel C, Sparks D, Farrell M, Hall T, et al. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals[J]. Environment International, 2019, 125:478-488
    [43] Xie Y, Fan JB, Zhu WX, Amombo E, Lou YH, Chen L, Fu JM. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation[J]. Frontiers in Plant Science, 2016, 7:755
    [44] Zhao XQ, Huang J, Lu J, Sun Y. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine[J]. Ecotoxicology and Environmental Safety, 2019, 170:218-226
    [45] Rajapaksha RMCP. Heavy metal tolerance of culturable bacteria and fungi in a long-term cultivated tropical ultisol[J]. European Journal of Soil Biology, 2011, 47(1):9-15
    [46] Hu J, Meng DL, Liu XD, Liang YL, Yin HQ, Liu HW. Response of soil fungal community to long-term chromium contamination[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(9):1838-1846
    [47] Frossard A, Hartmann M, Frey B. Tolerance of the forest soil microbiome to increasing mercury concentrations[J]. Soil Biology and Biochemistry, 2017, 105:162-176
    [48] Chen GZ, Jiang XY, Hu Y. The characteristics of bacterial communities and their co-occurrence networks in lake ecosystem with different trophic states[J]. Research of Environmental Sciences, 2020, 33(2):375-384(in Chinese)陈光哲, 姜星宇, 胡洋. 不同营养程度湖泊中细菌群落组成及其分子生态网络特征[J]. 环境科学研究, 2020, 33(2):375-384
    [49] Kong X, Jin DC, Wang XX, Zhang FS, Duan GL, Liu HJ, Jia MH, Deng Y. Dibutyl phthalate contamination remolded the fungal community in agro-environmental system[J]. Chemosphere, 2019, 215:189-198
    [50] Deng Y, Zhang P, Qin YJ, Tu QC, Yang YF, He ZL, Schadt CW, Zhou JZ. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation[J]. Environmental Microbiology, 2016, 18(1):205-218
    [51] Hou JY, Liu WX, Wu LH, Ge YY, Hu PJ, Li Z, Christie P. Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome[J]. Applied Soil Ecology, 2019, 133:62-69
    [52] Du J, Guo ZY, Li RH, Ali A, Guo D, Lahori AH, Wang P, Liu XY, Wang XJ, Zhang ZQ. Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms[J]. Environmental Pollution, 2020, 261:114213
    [53] Yan HM, Zhang XY, Tan WJ, Chen WM. Biodiversity and composition of rhizosphere fungal communities associated with five plant species[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2):364-369(in Chinese)燕红梅, 张欣钰, 檀文君, 陈卫民. 5种植物根际真菌群落结构与多样性[J]. 应用与环境生物学报, 2020, 26(2):364-369
    [54] Zeng Q. Dynamic changes of rhizosphere fungi community in different growth periods of soybean[D]. Harbin:Master's Thesis of Harbin Normal University, 2019(in Chinese)曾齐. 不同生长期大豆根际真菌群落结构动态变化研究[D]. 哈尔滨:哈尔滨师范大学硕士学位论文, 2019
    [55] Jia T, Guo TY, Wang RH, Chai BF. Effects of heavy metal contents on phyllosphere and rhizosphere fungal communities for Bothriochloa ischaemum in copper tailings area[J]. Environmental Science, 2020, 41(11):5193-5200(in Chinese)贾彤, 郭婷艳, 王瑞宏, 柴宝峰. 铜尾矿白羊草重金属含量对叶际和根际真菌群落的影响[J]. 环境科学, 2020, 41(11):5193-5200
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜云燕,张大为,陈红松,吴金锋,周定港,金德才,严明理. 镉胁迫对2种油菜土壤真菌群落的影响[J]. 微生物学通报, 2021, 48(11): 4030-4045

复制
分享
文章指标
  • 点击次数:466
  • 下载次数: 1165
  • HTML阅读次数: 859
  • 引用次数: 0
历史
  • 收稿日期:2021-02-03
  • 录用日期:2021-03-31
  • 在线发布日期: 2021-11-11
文章二维码