科微学术

微生物学通报

菲降解菌Pseudomonas sp.JM2-gfp细胞特性对生物膜形成能力的影响及其在植物根表的定殖
作者:
基金项目:

国家自然科学基金(21876017)


Effect of characteristics of phenanthrene-degrading bacteria Pseudomonas sp. JM2-gfp on biofilm formation and its colonization on plant root surface
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 多环芳烃是农田土壤中的主要有机污染物,可通过作物根系进入食物链威胁人类健康。采用高效降解菌在植物根际形成生物膜是一种经济可行的生态阻控策略,而细菌细胞特性是影响其表面粘附并进行初始成膜的关键。[目的] 探究菲高效降解菌Pseudomonassp. JM2-gfp的细胞特性对自聚集成膜过程的影响,观察其在小麦根表定殖成膜情况,为在土壤-根际系统中构建阻控屏障提供理论依据。[方法] 采用培养皿培养、结晶紫染色、接触角测量(Contact Angle Measurement,CAM)及定量方法测定JM2-gfp菌株细胞特性,采用植物液体培养法形成生物膜,采用激光共聚焦显微镜(Confocal Laser Scanning Microscope,CLSM)、扫描电子显微镜(Scanning Electron Microscope,SEM)观察和分析生物膜的结构特征。[结果] 菌株Pseudomonas sp. JM2-gfp生有鞭毛结构及疏水性细胞壁,并具备较强的运动能力、初始粘附率和自聚集能力。JM2-gfp菌株具有良好的成膜及降解能力,48 h菲降解效率是浮游态菌株的2.5倍。成膜过程呈现明显的周期性变化,2 d时生物膜量达最大值。2 d内生物膜厚度约为32.8μm,生物膜上分泌多种胞外基质物质(Extracellular Polymeric Substances,EPS),其中碳水化合物和蛋白质含量分别为74.68 μg/mL和211.9 μg/mL。小麦根系与菌液共培养4 d后,JM2-gfp菌株可在根表形成稳定的生物膜,并进一步定殖到根和茎、叶组织内部。[结论] 菲胁迫下,Pseudomonas sp. JM2-gfp降解菌易于在载体表面附着聚集形成生物膜,降解能力也随之增强,其在植物根表定殖成膜的结果为阻控土壤有机污染物进入作物体内提供了一种新的技术策略。

    Abstract:

    [Background] Polycyclic aromatic hydrocarbons (PAHs) accumulated in agricultural soils are threatening human health and ecosystem via food chain. The strategy to impede PAHs entrance by biofilm formation of degrading bacteria on the root surface is economically feasible. Bacteria cell properties are the key factors determining its adhesion and initial formation of the biofilm. [Objective] Our study aims to investigate the biofilm formation process and identify the features of a phenanthrene degrading bacterium Pseudomonas sp. JM2-gfp influencing on the cell adhesion and the biofilm formation, to observe its colonization on the wheat root surface, and finally to provide references for building a control barrier in the soil-rhizosphere system.[Methods] Methods of petri dish culture observation, crystal violet stain, and contact angle assay were used to determine the cell characteristics of JM2-gfp. Hydroponic culture of plant was used to generate the biofilm formation. The structural features of the biofilm were observed and analyzed by a confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). [Results] The strain Pseudomonas sp. JM2-gfp has a flagella structure and hydrophobic cell wall, as well as strong motility, initial adhesion, self-aggregation ability. It showed good biofilm-forming abilities and phenanthrene-degrading performance. Compared with planktonic bacteria, our biofilms can degrade phenanthrene within 48 hours by 2.5 times. The film formation process presented obvious periodic changes, and the amount of the biofilm reached the maximum at the second day. The thickness of the biofilm within 2 days was about 32.8 μm, and a variety of extracellular polymeric substances (EPS) were secreted on the biofilm, containing carbohydrate at the concentration of 74.68 μg/mL and protein 211.9 μg/mL, respectively. After 4 days of co-cultivation of wheat roots and JM2-gfp, a stable biofilm was formed by JM2-gfp on the root surface, and further colonized the roots, stems and leaf tissues. [Conclusion] The phenanthrene degrading bacterium Pseudomonas sp. JM2-gfp can form stable biofilms and enhance its degradation abilities. The formation of biofilm on the root surface provides an alternative approach in future applications to prevent organic pollutants entering into the crops.

    参考文献
    [1] Sun JT, Pan LL, Tsang DCW, Zhan Y, Zhu LZ, Li XD. Organic contamination and remediation in the agricultural soils of China:a critical review[J]. Science of the Total Environment, 2018, 615:724-740
    [2] Bansal V, Kim KH. Review of PAH contamination in food products and their health hazards[J]. Environment International, 2015, 84:26-38
    [3] Dutta K, Shityakov S, Khalifa I, Mal A, Moulik SP, Panda AK, Ghosh C. Effects of secondary carbon supplement on biofilm-mediated biodegradation of naphthalene by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD9[J]. Journal of Hazardous Materials, 2018, 357:187-197
    [4] Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Frontiers in Microbiology, 2016, 7:1369
    [5] Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms[J]. Nature Reviews Microbiology, 2019, 17(4):247-260
    [6] Joseph R, Naugolny A, Feldman M, Herzog IM, Fridman M, Cohen Y. Cationic pillararenes potently inhibit biofilm formation without affecting bacterial growth and viability[J]. Journal of the American Chemical Society, 2016, 138(3):754-757
    [7] Valentini M, Gonzalez D, Mavridou DA, Filloux A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa[J]. Current Opinion in Microbiology, 2018, 41:15-20
    [8] Leyva-Diaz JC, Martin-Pascual J, Poyatos JM. Moving bed biofilm reactor to treat wastewater[J]. International Journal of Environmental Science and Technology, 2017, 14(4):881-910
    [9] Kotoky R, Das S, Singha LP, Pandey P, Singha KM. Biodegradation of Benzo(a) pyrene by biofilm forming and plant growth promoting Acinetobacter sp. strain PDB4[J]. Environmental Technology & Innovation, 2017, 8:256-268
    [10] Ansari FA, Ahmad I. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes[J]. Scientific Reports, 2019, 9:4547
    [11] Jing HY, Sahle-Demessie E, Sorial GA. Inhibition of biofilm growth on polymer-MWCNTs composites and metal surfaces[J]. Science of the Total Environment, 2018, 633:167-178
    [12] Wang Y, Samaranayake LP, Dykes GA. Plant components affect bacterial biofilms development by altering their cell surface physicochemical properties:a predictability study using Actinomyces naeslundii[J]. FEMS Microbiology Ecology, 2021, 97(1):fiaa217
    [13] Perez Ipiña E, Otte S, Pontier-Bres R, Czerucka D, Peruani F. Bacteria display optimal transport near surfaces[J]. Nature Physics, 2019, 15(6):610-615
    [14] Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants[J]. Molecular Microbiology, 2003, 48(6):1511-1524
    [15] Ghorbal SKB, Chourabi K, Maalej L, Ammar AB, Ouzari HI, Hassen A, Jaafoura H, Chatti A. Pseudomonas aeruginosa swarmer cells adaptation toward UVc radiations[J]. Frontiers in Microbiology, 2019, 10:556
    [16] Bujdáková H, Didiášová M, Drahovská H, Černáková L. Role of cell surface hydrophobicity in Candida albicans biofilm[J]. Central European Journal of Biology, 2013, 8(3):259-262
    [17] Sorongon ML, Bloodgood RA, Burchard RP. Hydrophobicity, adhesion, and surface-exposed proteins of gliding bacteria[J]. Applied and Environmental Microbiology, 1991, 57(11):3193-3199
    [18] Ríos-Castillo AG, Thompson KD, Adams A, Mateo MM, Rodríguez-Jerez J. Biofilm formation of Flavobacterium psychrophilum on various substrates[J]. Aquaculture Research, 2018, 49:3830-3837
    [19] Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(1):7-12
    [20] Zhou YM, Gao XR. Characterization of biofilm formed by phenanthrene-degrading bacteria on rice root surfaces for reduction of PAH contamination in rice[J]. International Journal of Environmental Research and Public Health, 2019, 16(11):E2002
    [21] Kearns DB, Losick R. Swarming motility in undomesticated Bacillus subtilis[J]. Molecular Microbiology, 2003, 49(3):581-590
    [22] Mangwani N, Kumari S, Das S. Effect of synthetic N-acylhomoserine lactones on cell-cell interactions in marine Pseudomonas and biofilm mediated degradation of polycyclic aromatic hydrocarbons[J]. Chemical Engineering Journal, 2016:172-186
    [23] Rossi C, Chaves-López C, Serio A, Anniballi F, Valbonetti L, Paparella A. Effect of Origanum vulgare essential oil on biofilm formation and motility capacity of Pseudomonas fluorescens strains isolated from discoloured Mozzarella cheese[J]. Journal of Applied Microbiology, 2018, 124(5):1220-1231
    [24] Katz H, Farber R, Chaniel G, Ankar Y, Cohen H, Cahan R. Rhamnolipid-enhanced Pseudomonas putida biofilm formation on hydrophilic surfaces with toluene as the bacterium's sole carbon source[J]. International Biodeterioration & Biodegradation, 2018, 127:87-94
    [25] Lajhar SA, Brownlie J, Barlow R. Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia[J]. BMC Microbiology, 2018, 18(1):1-15
    [26] Premnath N, Mohanrasu K, Guru Raj Rao R, Dinesh GH, Siva Prakash G, Pugazhendhi A, Jeyakanthan J, Govarthanan M, Kumar P, Arun A. Effect of C/N substrates for enhanced extracellular polymeric substances (EPS) production and Poly Cyclic Aromatic Hydrocarbons (PAHs) degradation[J]. Environmental Pollution, 2021, 275:116035
    [27] Felz S, Vermeulen P, Van Loosdrecht MCM, Lin YM. Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS)[J]. Water Research, 2019, 157:201-208
    [28] Mangwani N, Shukla SK, Kumari S, Rao TS, Das S. Characterization of Stenotrophomonas acidaminiphila NCW-702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons[J]. Journal of Applied Microbiology, 2014, 117(4):1012-1024
    [29] Bossù M, Selan L, Artini M, Relucenti M, Familiari G, Papa R, Vrenna G, Spigaglia P, Barbanti F, Salucci A, et al. Characterization of Scardovia wiggsiae biofilm by original scanning electron microscopy protocol[J]. Microorganisms, 2020, 8(6):807
    [30] Shelud'ko AV, Filip'echeva YA, Shumilova EM, Khlebtsov BN, Burov AM, Petrova LP, Katsy EI. Changes in biofilm formation in the nonflagellated flhB1 mutant of Azospirillum brasilense Sp245[J]. Microbiology, 2015, 84(2):144-151
    [31] Van Oss CJ. Hydrophobicity and hydrophilicity of biosurfaces[J]. Current Opinion in Colloid & Interface Science, 1997, 2(5):503-512
    [32] Poimenidou SV, Chrysadakou M, Tzakoniati A, Bikouli VC, Nychas GJ, Skandamis PN. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds[J]. International Journal of Food Microbiology, 2016, 237:164-171
    [33] Zhu ML, Wang YH, Dai Y, Wu XQ, Ye JR. Effects of different culture conditions on the biofilm formation of Bacillus pumilus HR10[J]. Current Microbiology, 2020, 77(8):1405-1411
    [34] Karami P, Khaledi A, Mashoof RY, Yaghoobi MH, Karami M, Dastan D, Alikhani MY. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa[J]. Gene Reports, 2020, 18:100561
    [35] Mangwani N, Kumari S, Shukla SK, Rao TS, Das S. Phenotypic switching in biofilm-forming marine bacterium Paenibacillus lautus NE3B01[J]. Current Microbiology, 2014, 68(5):648-656
    [36] Mangwani N, Kumari S, Das S. Bacterial biofilms and quorum sensing:fidelity in bioremediation technology[J]. Biotechnology and Genetic Engineering Reviews, 2016, 32(1/2):43-73
    [37] Beech IB, Gubner R, Zinkevich V, Hanjangsit L, Avci R. Characterisation of conditioning layers formed by exopolymeric substances of Pseudomonas NCIMB 2021 on surfaces of AISI 316 stainless steel[J]. Biofouling, 2000, 16(2/3/4):93-104
    [38] Watnick P, Kolter R. Biofilm, city of microbes[J]. Journal of Bacteriology, 2000, 182(10):2675-2679
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高晓蓉,朱丽晖,周玉嫚. 菲降解菌Pseudomonas sp. JM2-gfp细胞特性对生物膜形成能力的影响及其在植物根表的定殖[J]. 微生物学通报, 2021, 48(11): 4019-4029

复制
分享
文章指标
  • 点击次数:446
  • 下载次数: 1183
  • HTML阅读次数: 910
  • 引用次数: 0
历史
  • 收稿日期:2021-02-02
  • 录用日期:2021-04-09
  • 在线发布日期: 2021-11-11
文章二维码