科微学术

微生物学通报

红树林土壤中产聚羟基脂肪酸酯细菌的分离及其评估
作者:
基金项目:

广东省海洋经济发展(海洋六大产业)专项资金项目(粤自然资合[2020]034号);中国博士后科学基金(2019M662806)


Isolation and evaluation of polyhdroxyalkanoate producing bacteria from mangrove soil
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [背景] 细菌能通过合成聚羟基脂肪酸酯(Polyhydroxyalknoates,PHA)在细胞内储存物质和能量,提高对环境的适应能力。在红树林中,由于土壤周期性受海水浸没,形成营养物质种类丰富和含量波动大的特殊生境,为细菌进化出特殊的PHA合成途径提供了条件。[目标] 为了增加对红树林产PHA细菌资源的了解,获得产PHA细菌,使用纯培养方法分离和鉴定细菌,并评估菌株的产PHA能力。[方法] 采集红树植物海桑根系和红树滩涂土壤样品,连续5周培养、分离纯化获得细菌菌株;通过16S rRNA基因相似性及系统进化分析鉴定细菌分类地位,利用PHA合成酶基因(phaC)鉴定细菌合成PHA的能力;通过基因组草图测序,分析细菌的phaC基因种类、代谢通路及系统进化关系;通过气相色谱分析细菌产PHA的累积量及组成。[结果] 从红树林土壤样品中分离得到97株细菌,其中13株带有phaC基因,包括坚强芽孢杆菌(Cytobacillus firmus)、弯曲芽孢杆菌(Bacillus flexus)、除烃海杆菌(Marinobacter hydrocarbonoclasticus)和酯香微杆菌(Microbacterium esteraromaticum)。B. flexus MN15-19以丙酮酸盐为碳源,可累积细胞干重11%的PHA,同时具有固碳功能的还原性三羧酸循环通路,有开发成为固碳产PHA工程菌株的潜力。酯香微杆菌可产PHA,但是其phaC基因结构特殊,基因组注释未能识别出任何已知phaC基因。[结论] 研究发现红树林土壤可培养细菌中存在未知的PHA合成途径,说明红树林生态系统中的细菌具有资源挖掘的重要价值。

    Abstract:

    [Background] Bacteria can synthesize polyhydroxyalkanoates (PHA) as intracellular carbon and energy storage compounds in order to better adapt to the environment. In mangroves, the soil is periodically submerged by seawater, which forms a special habitat with abundant nutrients and fluctuating contents, providing conditions for bacteria to evolve a special PHA synthesis pathway. [Objective] In order to improve the understanding of PHA-producing bacterial resources, we isolated and identified the PHA-producing bacteria, and evaluated their ability to produce PHA. [Methods] We collected soil samples from shoal and Sonneratia caseolaris rhizosphere, isolated bacteria during the 5 weeks of incubation, identified them by 16S rRNA gene sequence similarity and phylogenetic tree, and determined the PHA producing ability by testing the PHA synthase gene (phaC). Based on the draft genome sequence data, we determined the class of phaC gene, the metabolic pathways and the phylogenetic relationship among different strains. We analyzed the PHA content and composition using gas chromatography. [Results] A total of 97 strains of bacteria were isolated, among which 13 strains were PHA-producing bacteria, including Cytobacillus firmus, Bacillus flexus, Marinobacter hydrocarbonoclasticus and Microbacterium esteraromaticum. B. flexus MN15-19 using pyruvate as the sole carbon source could accumulate 11% PHA per dry cell weight. This strain had reverse tricarboxylic acid cycle, which is considered as carbon fixation pathway. Therefore, based on B. flexus MN15-19, PHA production technique directly using CO2 could be developed. Mi. esteraromaticum was a PHA-producing bacterium, whose phaC gene was too unique to be identified as any known phaC genes. [Conclusion] Bacteria isolated from mangrove ecosystem have unknown PHA synthase pathway, which indicates that mangrove bacterial biological resources deserve further study.

    参考文献
    [1] Lee SY, Choi JI, Wong HH. Recent advances in polyhydroxyalkanoate production by bacterial fermentation:mini-review[J]. International Journal of Biological Macromolecules, 1999, 25(1/3):31-36
    [2] Steinbüchel A, Lütke-Eversloh T. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms[J]. Biochemical Engineering Journal, 2003, 16(2):81-96
    [3] Han J, Hou J, Liu HL, Cai SF, Feng B, Zhou J, Xiang H. Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases[J]. Applied and Environmental Microbiology, 2010, 76(23):7811-7819
    [4] De Koning G. Physical properties of bacterial poly((R)-3-hydroxyalkanoates)[J]. Canadian Journal of Microbiology, 1995, 41(13):303-309
    [5] Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future[J]. Materials Science and Engineering:R:Reports, 2011, 72(3):29-47
    [6] Saito Y, Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans[J]. International Journal of Biological Macromolecules, 1994, 16(2):99-104
    [7] Agnew DE, Stevermer AK, Youngquist JT, Pfleger BF. Engineering Escherichia coli for production of C12-C14 polyhydroxyalkanoate from glucose[J]. Metabolic Engineering, 2012, 14(6):705-713
    [8] Wang Q, Nomura CT. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources[J]. Journal of Bioscience and Bioengineering, 2010, 110(6):653-659
    [9] Holguin G, Vazquez P, Bashan Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems:an overview[J]. Biology and Fertility of Soils, 2001, 33(4):265-278
    [10] Rawte T, Padte M, Mavinkurve S. Incidence of marine and mangrove bacteria accumulating polyhydroxyalkanoates on the mid-west coast of India[J]. World Journal of Microbiology and Biotechnology, 2002, 18(7):655-659
    [11] Van-Thuoc D, Huu-Phong T, Thi-Binh N, Thi-Tho N, Minh-Lam D, Quillaguamán J. Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam[J]. Microbiology Open, 2012, 1(4):395-406
    [12] Moorkoth D, Nampoothiri KM. Production and characterization of poly(3-hydroxy butyrate-co-3 hydroxyvalerate) (PHBV) by a novel halotolerant mangrove isolate[J]. Bioresource Technology, 2016, 201:253-260
    [13] Lakshmanan M, Foong CP, Abe H, Sudesh K. Biosynthesis and characterization of co and ter-polyesters of polyhydroxyalkanoates containing high monomeric fractions of 4-hydroxybutyrate and 5-hydroxyvalerate via a novel PHA synthase[J]. Polymer Degradation and Stability, 2019, 163:122-135
    [14] Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ, Chen GJ, Du ZJ. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing[J]. Microbiome, 2018, 6(1):230
    [15] Juengert JR, Bresan S, Jendrossek D. Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and nile red staining[J]. Bio-Protocol, 2018, 8(5):e2748
    [16] Martinez-Gutierrez CA, Latisnere-Barragán H, García-Maldonado JQ, López-Cortes A. Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico[J]. PeeRJ, 2018, 6:e4780
    [17] Nayak PK, Mohanty AK, Gaonkar T, Kumar A, Bhosle SN, Garg S. Rapid identification of polyhydroxyalkanoate accumulating members of Bacillales using internal primers for phaC gene of Bacillus megaterium[J]. ISRN Bacteriology, 2013:562014
    [18] Chen GQ, Wei DX. Microbial Polyhydroxyalkanoates[M]. Beijing:Chemical Industry Press, 2014:31(in Chinese)陈国强, 魏岱旭. 微生物聚羟基脂肪酸酯[M]. 北京:化学工业出版社, 2014:31
    [19] Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus:proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(1):406-438
    [20] Anas A, Nilayangod C, Jasmin C, Vinothkumar S, Parameswaran PS, Nair S. Diversity and bioactive potentials of culturable heterotrophic bacteria from the surficial sediments of the Arabian Sea[J]. 3 Biotech, 2016, 6(2):238
    [21] Ding SL. The heavy metal pollutions and microbial communities of mangrove sediments in two major metropolis of China-Shenzhen and Hong Kong[D]. Shenzhen:Master's Thesis of Shenzhen University, 2018(in Chinese)丁苏丽?嬠?土崤‰?攑榗溉狯楩挭棍????勊慶戎斮爟杩?????牳槻挔歶敛?偝???攳渺滱礳?卦呕???澺犇愬氠攲猰??愼浢敲稾?????慙扩畮?前偑??但??潧渠湊潘爬?????卧琠敘楆測戠??????挬栠敌汩????匬礠湚瑨桯敵猠楊献?杓慯獩??獭祩湣杲慯獢??摬攠牣楯癭敭摵?浩整摹椠畳浴?捵档慴極湲?氠敩湮朠瑮桡?灵潲污祬栠祡摮牤漠硴祲慡汮歳慰湬潡慮瑴敥?猠祭湡瑮桧敲獯楶獥?椨渼?放湋条楮湤敥敬物敡搠??楯?剡桴潡搼漯獩瀾椩爠楦汯汲略浳?牳畛扊牝甮洠??楯?孯?嵩???瀠灓汣楩敥摮?慥測搠′?渱瘷椬爠漳渶洨攵温琺愱氭??椨捩牮漠扃楨潩汮潥杳祥???々?????水??』???ㄡ????中?ら?戠牨?嬮??崶??槥枢甑掗栟槤?吟慩殤攽痓掄栆榐????丠生洁懑瑦愬?????挬攠琳愶琨攵?椺渱搭由挰椼湢杲 ̄浛攲琳慝戠潚汨楡据?猠瑘慈琮攠獍?敲湩桮慥渠捍敩?灲潯汢祩桯祬摯牧潹硛祍慝氮欠愲湮潤愠瑥敤?瀠牂潥摩番捩瑮楧漺湓?楩湥?浣慥爠楐湲敥?灳甬爠瀲氰攱?渺漹游?獩畮氠晃畨物?扥慳捥琩攠牓楎愮?畷渋撮攟物?慛敍牝漮戠椲捈?挠漗溬携槑瑦槺潈渾猬嬠?崰???爹漸渼瑢楲放牛猲?楝渠??楮漠敊測朠楃湨敥敮爠楙湌本?慗湡摮??楙潍琬攠捚桨湯潵氠潚权礬??????????????扬爠?孩??嵲?呢慵歴敩畯据栠楯?????慨瑹慡湲潣????啴湡楬漠湣?潭晭?瑮桩整?来敳渠敩牮愠??楮??楯捶牥漠扷慥捴瑬敡牮楤畳洠??楧??佳牴汳愠??敳湴獩敮湣?愠湮摩??楥??畲牥敦潥扲慥据瑣敥爠楯畦洠??楴???潲汣汨楡湥獯?敡琠?慵汢??楯湵?愠?牛敊摝攮映楍湩散摲?杢敩湡畬猠??楯??楧捹爬漠戲愰挱琹攬爠椷男洨??椺?嬱?崭?′?渼瑢敲爾湛愲琵楝漠湗慵氠??漠畓牵湮愠汓?漬映?卵礠獈瑈攬洠慃瑨楥据?慘湚搬??癨潥汮甠瑇楑漮渠慅牮祶??楯据牭潥扮楴潡汬漠杤祥???????????倠瑭???????????nthesis of polyhydroxyalkanoates[J]. Acta Polymerica Sinica, 2000(6):751-756(in Chinese)吴琼, 孙素琴, 余海虎, 陈新滋, 陈国强. 聚羟基脂肪酸酯细菌合成的生长环境依赖性[J]. 高分子学报, 2000(6):751-756
    [26] Yilmaz M, Beyatli Y. Poly-β-hydroxybutyrate (PHB) production by a Bacillus cereus M5 strain in sugarbeet molasses[J]. Zuckerindustrie, 2005, 130(2):109-112
    [27] Kumar T, Singh M, Purohit HJ, Kalia VC. Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste[J]. Journal of Applied Microbiology, 2009, 106(6):2017-2023
    [28] Philip S, Sengupta S, Keshavarz T, Roy I. Effect of impeller speed and pH on the production of poly(3-hydroxybutyrate) using Bacillus cereus SPV[J]. Biomacromolecules, 2009, 10(4):691-699
    [29] Mezzolla V, D'Urso OF, Poltronieri P. Role of PhaC type I and type II enzymes during PHA biosynthesis[J]. Polymers, 2018, 10(8):910
    [30] Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, Mori K, Kato Y, Miyazaki M, Shimamura S, et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile[J]. Science, 2018, 359(6375):559-563
    [31] Hügler M, Sievert SM. Beyond the Calvin cycle:autotrophic carbon fixation in the ocean[J]. Annual Review of Marine Science, 2011, 3:261-289
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑维爽,于盛洋,翟生强,吴远东,黄艺. 红树林土壤中产聚羟基脂肪酸酯细菌的分离及其评估[J]. 微生物学通报, 2021, 48(11): 3985-3995

复制
分享
文章指标
  • 点击次数:558
  • 下载次数: 1213
  • HTML阅读次数: 640
  • 引用次数: 0
历史
  • 收稿日期:2021-01-19
  • 录用日期:2021-03-05
  • 在线发布日期: 2021-11-11
文章二维码