科微学术

微生物学通报

象山港硅藻赤潮过程中真菌群落演替及互作特征
作者:
基金项目:

国家自然科学基金面上项目(42076158);宁波大学省属高校基本业务费项目(SJLY2020005)


Succession and interaction of fungal community during a diatom bloom in Xiangshan Bay
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [背景] 近岸海域赤潮的发生能显著改变包括真菌在内的微生物群落组成,进而影响海洋中碳氮元素循环。真菌是海洋中重要的分解者,但赤潮过程对真菌群落的影响少有报道。[目的] 探明赤潮过程对真菌群落的影响,对进一步阐释赤潮对生态系统中物质循环的影响具有重要意义。[方法] 针对2017年春季象山港硅藻赤潮,对真菌内源转录间隔区1(Internally Transcribed Spacer 1,ITS1)序列进行高通量测序,研究赤潮过程中真菌群落响应及共现性特征。[结果] 真菌群落的α多样性指数在赤潮暴发的各阶段差异显著,而且均与磷酸盐、硝酸盐和亚硝酸盐有显著相关性(P<0.05)。子囊菌门(Ascomycota,90.2%)和担子菌门(Basidiomycota,8.27%)是本次硅藻赤潮的优势菌门,其中子囊菌门遍布赤潮暴发的4个阶段;锤舌菌纲(Leotiomycetes,16.1%)和散囊菌纲(Eurotiomycetes,9.3%)是纲水平上的主要优势类群。赤潮暴发过程中硝酸盐、亚硝酸盐、磷酸盐和温度等环境因素的改变,驱动真菌群落组成及结构发生显著变化。Helotiales、Eurotiales、Xylariales、Sacc haromycetalesAgaricostilbales构成了真菌群落共现网络的主体。[结论] 真菌群落在赤潮的各阶段具有显著的演替特征,赤潮藻生消是引起真菌群落演替的主要因素,但是环境因子也扮演着重要角色。赤潮过程中,真菌群落同类群内的互作要强于不同类群间的互作,这对维持群落的稳定性具有重要意义。

    Abstract:

    [Background] Harmful algal blooms (HABs) in coastal waters can significantly change the composition of microbial community, thereby affecting the cycling of carbon and nitrogen in the ocean. Fungi are important decomposers in the ocean, but the impact of HABs on fungal community has not been elucidated. [Objective] Clarifying the influence of HABs on the fungal community is of great importance for further explaining the effect of HABs on material cycle in the ecosystem. [Methods] Through ITS1 amplicon sequencing, we analyzed the response of fungal community to an early-spring diatom bloom in 2017, in order to investigate the dynamic and co-occurrence patterns of the community. [Results] The alpha diversity indices of the fungal community changed significantly among four bloom stages, and they were all correlated with phosphate, nitrate, and nitrite (P<0.05). At the phylum level, the fungal community was dominated by Ascomycota (relative abundance:90.2%) and Basidiomycota (8.27%), among which Ascomycota was dominant across the four stages. At the class level, fungi from Leotiomycetes (16.1%) and Eurotiomycetes (9.3%) were the most abundant. The succession of fungal community was mainly driven by the abundance of harmful algal species, but changes in environmental factors including nitrate, nitrite, and phosphate were also responsible. Co-occurrence network was mainly composed of Helotiales, Eurotiales, Xylariales, Saccharomycetales, and Agaricostilbales. [Conclusion] The fungal community demonstrated obvious succession during the diatom bloom, which was mainly induced by diatom abundance, as well as environmental factors. The interaction of the fungal community within group was stronger than that between groups during the bloom, which is important for maintaining community stability.

    参考文献
    [1] Gu Y, Xiang YT. Relationship of red tide and eutrophication in Xiangshan Harbour aera[J]. Marine Environmental Science, 2002(3):67-69(in Chinese)谷颖, 项有堂. 象山港海域富营养化与赤潮的关系[J]. 海洋环境科学, 2002(3):67-69
    [2] Yang Z, Ran LH, Xu XQ, Ji ZQ, Zhu Y, Chen QN, Chen JF. The behavior of phosphate in the Xiangshan Bay and its potential impact on harmful algal blooms[J]. Haiyang Xuebao, 2018, 40(10):61-70(in Chinese)杨志, 冉莉华, 徐晓群, 季仲强, 朱勇, 陈倩娜, 陈建芳. 象山港水体的磷酸盐及其对赤潮的潜在影响[J]. 海洋学报, 2018, 40(10):61-70
    [3] Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya[J]. Frontiers in Microbiology, 2014, 5
    [4] Duarte S, Baerlocher F, Pascoal C, Cassio F. Biogeography of aquatic hyphomycetes:current knowledge and future perspectives[J]. Fungal Ecology, 2016, 19:169-181
    [5] Li W. Current status, problems and future prospects of the studies on molecular ecology of marine fungi[J]. Mycosystema, 2019, 38(7):1021-1032(in Chinese)李伟. 海洋真菌分子生态学研究概况、问题与展望[J]. 菌物学报, 2019, 38(7):1021-1032
    [6] Guest RK, Smith DW. A potential new role for fungi in a wastewater MBR biological nitrogen reduction system[J]. Journal of Environmental Engineering and Science, 2002, 1(6):433-437
    [7] Weber SD, Ludwig W, Schleifer KH, Fried J. Microbial composition and structure of aerobic granular sewage biofilms[J]. Applied and Environmental Microbiology, 2007, 73(19):6233-6240
    [8] Arfi Y, Marchand C, Wartel M, Record E. Fungal diversity in anoxic-sulfidic sediments in a mangrove soil[J]. Fungal Ecology, 2012, 5(2):282-285
    [9] Mitra S, Bianchi TS, Guo L, Santschi PH. Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight[J]. Geochimica et Cosmochimica Acta, 2000, 64(20):3547-3557
    [10] Xu W, Li GW, Huang XL, Luo ZH. Fungal diversity study in the deep sea sediments of three oceans by culture-dependent approach[J]. Journal of Applied Oceanography, 2015, 34(1):103-110(in Chinese)徐炜, 李广伟, 黄翔玲, 骆祝华. 三大洋深海沉积物样品可培养真菌多样性研究[J]. 应用海洋学学报, 2015, 34(1):103-110
    [11] Yin XL, Chen GX, Wang C, Wang XT, Yang X, Wang WQ. Effects of Spartina alterniflora invasion on soil fungi community structure and diversity in estuarine wetland[J]. Acta Scientiae Circumstantiae, 2020, 40(6):2186-2194(in Chinese)尹晓雷, 陈桂香, 王纯, 王晓彤, 阳祥, 王维奇. 互花米草入侵对河口湿地土壤真菌群落结构及多样性影响[J]. 环境科学学报, 2020, 40(6):2186-2194
    [12] Zhang HJ, Wang K, Shen LX, Chen HP, Hou FR, Zhou XY, Zhang DM, Zhu XY. Microbial community dynamics and assembly follow trajectories of an early-spring diatom bloom in a semi-enclosed bay[J]. Applied and Environmental Microbiology, 2018, 84(18):e01000-e1018
    [13] Hou FR, Zhang HJ, Xie WJ, Zhou XY, Zhu XY, Zhang DM. Co-occurrence patterns and assembly processes of microeukaryotic communities in an early-spring diatom bloom[J]. The Science of the Total Environment, 2020, 711:134624
    [14] Chen HP, Zhu JL, Zhang DM, Zhu XY, Zheng KH, Wang K. Temporal and spatial distribution of bacterioplankton community in the Xiangshan bay in summer 2013[J]. Oceanologia et Limnologia Sinica, 2018(6):1268-1278(in Chinese)陈和平, 朱建林, 张德民, 祝翔宇, 郑凯宏, 王凯. 象山港2013年夏季浮游细菌群落的时空分布特征[J]. 海洋与湖沼, 2018(6):1268-1278
    [15] State Oceanic Administration. The specification for marine monitoring-Part 4:seawater analysis:GB 17378.4-2007[S]. Beijing:Standards Press of China, 2008(in Chinese)国家海洋局. 海洋监测规范:第4部分海水分析:GB 17378.4-2007[S]. 北京:中国标准出版社, 2008.
    [16] Edgar RC. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19):2460-2461
    [17] Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, et al. Vegan:community ecology package[Z]. R package version 2.5-3, 2018. https://www.webofscience.com/wos/alldb/full-record/WOS:000189220100019
    [18] Kolde R. Pheatmap:pretty heatmaps[Z]. R Package Version 1.0.12. 2018. https://CRAN.Rproject.org/web/packages/pheatmap/index.html
    [19] De Caceres M, Legendre P. Associations between species and groups of sites:indices and statistical inference[J]. Ecology, 2009, 90(12):3566-3574
    [20] Lieberman E, Hauert, C, Nowak, MA. Evolutionary dynamics on graphs[J]. Nature 2005, 433:312-316
    [21] Frenken T, Velthuis M, de Senerpont Domis LN, Stephan S, Aben R, Kosten S, van Donk E, van de Waal DB. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites[J]. Global Change Biology, 2016, 22(1):299-309
    [22] Boer WD, Folman LB, Summerbell RC, Boddy L. Living in a fungal world:impact of fungi on soil bacterial niche development[J]. FEMS Microbiology Reviews, 2005, 29(4):795-811
    [23] Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J, Buscot F, Krueger D. Network analysis reveals ecological links between n-fixing bacteria and wood-decaying fungi[J]. Plos One, 2014, 9(2):e88141
    [24] Jiang ZB, Chen QZ, Zeng JN, Liao YB, Shou L, Liu JJ. Phytoplankton community distribution in relation to environmental parameters in three aquaculture systems in a Chinese subtropical eutrophic bay[J]. Marine Ecology Progress Series, 2012, 446:73-89
    [25] Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land[J]. Microbiology and Molecular Biology Reviews, 2015, 79(2):243-262
    [26] Li C, Ma ZZ, Qiao SS, Liu JX, Chai BF. Analysis of driving forces underlying the structure of fungal community in temperate forest soils based on microcosm experiments[J]. Ecology and Environmental Sciences, 2018(5):811-817(in Chinese)李毳, 马转转, 乔沙沙, 刘晋仙, 柴宝峰. 原位微宇宙法研究温带森林土壤真菌群落构建的驱动机制[J]. 生态环境学报, 2018(5):811-817
    [27] Ishida S, Nozaki D, Grossart HP, Kagami M. Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Environmental Microbiology Reports, 2015, 7(3):435-441
    [28] Sun JY, Song Y, Ma ZP, Zhang HJ, Yang ZD, Cai ZH, Zhou J. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom[J]. Marine Environmental Research, 2017, 131:183-194
    [29] Khomich M, Davey ML, Kauserud H, Rasconi S, Andersen T. Fungal communities in Scandinavian lakes along a longitudinal gradient[J]. Fungal Ecology, 2017, 27:36-46
    [30] Bernhard JM, Kormas K, Pachiadaki MG, Rocke E, Beaudoin DJ, Morrison C, Visscher PT, Cobban A, Starczak VR, Edgcomb VP. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments[J]. Frontiers in Microbiology, 2014, 5:605
    [31] Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang SX, Mann AJ, Waldmann J, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom[J]. Science, 2012, 336(6081):608-611
    [32] Kagami M, Amano Y, Ishii N. Community structure of planktonic fungi and the impact of parasitic chytrids on phytoplankton in lake inba, Japan[J]. Microbial Ecology, 2012, 63(2):358-368
    [33] Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL. Wood-destroying soft rot fungi in the historic expedition huts of Antarctica[J]. Applied and Environmental Microbiology, 2004, 70(3):1328-1335
    [34] Zheng BH, Wang XY, Li YJ, Chen Y, Li BL, LI YY, Chen ZJ. Community structure, function, and influencing factors of planktonic fungi in the danjiangkou reservoir[J]. Environmental Science, 2021, 42(1):234-241(in Chinese)郑保海, 王晓宇, 李英军, 陈彦, 李百炼, 李玉英, 陈兆进. 丹江口库区浮游真菌组成与功能及其影响因素[J]. 环境科学, 2021, 42(1):234-241
    [35] Liu YL, Zhang YB, Lin QL, Hu HQ, Wang JH. Fungal community in Zhanjiang Bay of South China and its relationship with environmental factors[J]. Mycosystema, 2015, 34(1):53-64(in Chinese)刘月廉, 张瑜斌, 林巧玲, 胡汉桥, 王季槐. 广东湛江湾优势真菌群落结构及其与理化因子的关系[J]. 菌物学报, 2015, 34(1):53-64
    [36] Tisthammer KH, Cobian GM, Amend AS. Global biogeography of marine fungi is shaped by the environment[J]. Fungal Ecology, 2016, 19:39-46
    [37] Zhou MJ, Shen ZL, Yu RC. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research, 2008, 28(12):1483-1489
    [38] Ma B, Wang YL, Ye SD, Liu S, Stirling E, Gilbert JA, Faust K, Knight R, Jansson JK, Cardona C, et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes[J]. Microbiome, 2020, 8(1):82
    [39] Blanchette RA, Held BW, Arenz BE, Jurgens JA, Baltes NJ, Duncan SM, Farrell RL. An Antarctic hot spot for fungi at shackleton's historic hut on cape royds[J]. Microbial Ecology, 2010, 60(1):29-38
    [40] Simonato F, Campanaro S, Lauro FM, Vezzi A, D'Angelo M, Vitulo N, Valle G, Bartlett DH. Piezophilic adaptation:a genomic point of view[J]. Journal of Biotechnology, 2006, 126(1):11-25
    [41] Liu JX, Li C, Luo ZM, Wang X, Bao JB, Chai BF. Distribution pattern and diversity maintenance mechanisms of fungal community in subalpine lakes[J]. Environmental Science, 2019, 40(5):2382-2393(in Chinese)刘晋仙, 李毳, 罗正明, 王雪, 暴家兵, 柴宝峰. 亚高山湖群中真菌群落的分布格局和多样性维持机制[J]. 环境科学, 2019, 40(5):2382-2393
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢伟娟,陈晨,赵志颖,张继宁,侯繁荣,张德民,张化俊. 象山港硅藻赤潮过程中真菌群落演替及互作特征[J]. 微生物学通报, 2021, 48(11): 3958-3970

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-01
  • 录用日期:2021-03-07
  • 在线发布日期: 2021-11-11
文章二维码