科微学术

微生物学通报

附属蛋白:冠状病毒不容忽视的一类蛋白
作者:
基金项目:

国家自然科学基金(32072838);国家重点研发计划(2016YFD0500101);上海市科技兴农项目(2020-02-08-00-12-F01478)


Accessory proteins: a type of protein that cannot be neglected in coronaviruses
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [96]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    冠状病毒(Coronaviruses,CoVs)是基因组最大的一类单股正链RNA病毒,多数可以跨物种传播并感染人类,是当前引起重大公共卫生事件、严重威胁人类健康的病原之一。病毒基因组全长约25—31 kb,编码多个非结构蛋白、结构蛋白(S、E、M、N)及附属蛋白。对于大多数冠状病毒来说,附属蛋白虽然是病毒复制的非必需蛋白,但往往在病毒的致病过程中发挥重要作用,是冠状病毒重要的功能蛋白。该类蛋白位于病毒基因组的3'端,由位于基因起始位置的转录调控序列(Transcription Regulating Sequence,TRS)调控其mRNA的转录,而且蛋白编码序列的密码子使用偏爱性对蛋白翻译也产生重要影响。附属蛋白具有跨膜蛋白的属性和独特的蛋白转运基序,后者对该类蛋白跨膜区的形成、拓扑学结构及蛋白的细胞内运输过程起决定性的作用,从而直接影响附属蛋白的功能。本文首先总结了冠状病毒最新的分类及基因组结构;然后从附属蛋白的种类、功能、蛋白转运基序、拓扑学结构及密码子使用偏爱性等方面系统概述了相关研究进展,并对下一步的研究方向进行了展望,为更加全面地认识冠状病毒附属蛋白的生物学特性提供重要参考。

    Abstract:

    Coronaviruses (CoVs) are a group of positive-sense, single-stranded RNA viruses with the largest genome, most of which can spread across species and infect humans. Some of the pathogens in the group are causing major public health problems and seriously threatening human health. The full-length genome of the viruses is about 25—31 kb in length, encoding multiple nonstructural, structural proteins (S, E, M, and N) and accessory proteins. For most coronaviruses, their accessory proteins are not indispensable for viral replication, but they are often involved in pathogenesis in hosts and act as functional proteins. These accessory protein genes are located at the 3' end of the viral genomes. Expression of these genes can be regulated at transcription level by the transcription regulating sequence (TRS) which locates at the beginning of the genes or at translation level by the codon usage bias of the protein-coding sequences. The accessory proteins belong to trans-membrane protein and carry unique protein transport motifs. These characters play decisive role for the formation of unique topological structures and intracellular transport of the proteins, thus directly affect their functions. A summary of the latest classification and genome structure of coronaviruses was made in the beginning of the article; then roles, categorization, protein transport motifs, topological structures and codon usage bias of the accessory proteins were discussed individually and prospects of research in the field were foreseen as well, aiming to help understand the biological characteristics of this category of proteins.

    参考文献
    [1] Estola T. Coronaviruses, a new group of animal RNA viruses[J]. Avian Diseases, 1970, 14(2):330-336
    [2] King AM, Lefkowitz E, Adams MJ, Carstens EB. Virus taxonomy:ninth report of the International Committee on Taxonomy of Viruses[M]. San Diego:Elsevier, 2011, 1-1326
    [3] Liu J, Xie WL, Wang YT, Xiong Y, Chen SQ, Han JJ, Wu QP. A comparative overview of COVID-19, MERS and SARS:review article[J]. International Journal of Surgery (London, England), 2020, 81:1-8
    [4] Artika IM, Dewantari AK, Wiyatno A. Molecular biology of coronaviruses:current knowledge[J]. Heliyon, 2020, 6(8):e04743
    [5] Li F. Structure, function, and evolution of coronavirus spike proteins[J]. Annual Review of Virology, 2016, 3(1):237-261
    [6] Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, Bai R, Teng JLL, Tsang CCC, Wang M, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus[J]. Journal of Virology, 2012, 86(7):3995-4008
    [7] Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses[J]. Nature Reviews Microbiology, 2019, 17(3):181-192
    [8] Wang XJ, Li JX, Wang MR, Zhou ZY, Zhu BC, Zhang XX, Zhang R, Tang W, Wu YF, Zhang WT, et al. Antiviral properties of traditional Chinese medicine against coronavirus:research clues for coronavirus disease-2019[J]. World Journal of Traditional Chinese Medicine, 2020, 6(2):132-138
    [9] Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis[J]. Viruses, 2010, 2(8):1804-1820
    [10] Gomaa MH, Yoo D, Ojkic D, Barta JR. Infection with a pathogenic turkey coronavirus isolate negatively affects growth performance and intestinal morphology of young turkey poults in Canada[J]. Avian Pathology, 2009, 38(4):279-286
    [11] Ou XY, Liu Y, Lei XB, Li P, Mi D, Ren LL, Guo L, Guo RX, Chen T, Hu JX, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV[J]. Nature Communications, 2020, 11:1620
    [12] Papa G, Mallery DL, Albecka A, Welch LG, Cattin-Ortolá J, Luptak J, Paul D, McMahon HT, Goodfellow IG, Carter A, et al. Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion[J]. PLoS Pathogens, 2021, 17(1):e1009246
    [13] Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14):5871-5876
    [14] Hulswit RJG, de Haan CAM, Bosch BJ. Coronavirus spike protein and tropism changes[J]. Advances in Virus Research, 2016, 96:29-57
    [15] Tan YB, Sun LM, Wang G, Shi YJ, Dong WY, Fu YN, Fu Z, Chen HC, Peng GQ. The trypsin-enhanced infection of porcine epidemic diarrhea virus is determined by the S2 subunit of the spike glycoprotein[J]. Journal of Virology, 2021:e02453-20
    [16] Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus[J]. Nature, 1984, 308(5961):751-752
    [17] Chen Y, Liu QY, Guo DY. Emerging coronaviruses:genome structure, replication, and pathogenesis[J]. Journal of Medical Virology, 2020, 92(4):418-423
    [18] Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, Alcaraz A, Torres J, Aguilella VM, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis[J]. PLoS Pathogens, 2014, 10(5):e1004077
    [19] Singh Tomar PP, Arkin IT. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine[J]. Biochemical and Biophysical Research Communications, 2020, 530(1):10-14
    [20] Mu JF, Fang YH, Yang Q, Shu T, Wang A, Huang MH, Jin L, Deng F, Qiu Y, Zhou X. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2[J]. Cell Discovery, 2020, 6:65
    [21] Chang CY, Liu HM, Chang MF, Chang SC. Middle East respiratory syndrome coronavirus nucleocapsid protein suppresses type I and type III interferon induction by targeting RIG-I signaling[J]. Journal of Virology, 2020, 94(13):e00099-20
    [22] Li JY, Liao CH, Wang Q, Tan YJ, Luo R, Qiu Y, Ge XY. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway[J]. Virus Research, 2020, 286:198074
    [23] Klausegger A, Strobl B, Regl G, Kaser A, Luytjes W, Vlasak R. Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus[J]. Journal of Virology, 1999, 73(5):3737-3743
    [24] Lang YF, Li WT, Li ZS, Koerhuis D, van den Burg ACS, Rozemuller E, Bosch BJ, van Kuppeveld FJM, Boons GJ, Huizinga EG, et al. Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41):25759-25770
    [25] Shang JZ, Han N, Chen ZY, Peng YS, Li L, Zhou HY, Ji CY, Meng J, Jiang TJ, Wu AP. Compositional diversity and evolutionary pattern of coronavirus accessory proteins[J]. Briefings in Bioinformatics, 2020. DOI:10.1093/bib/bbaa262
    [26] Zhang RH, Wang K, Lv W, Yu WJ, Xie SQ, Xu K, Schwarz W, Xiong SD, Sun B. The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production[J]. Biochimica et Biophysica Acta:BBA-Biomembranes, 2014, 1838(4):1088-1095
    [27] Müller MA, van der Hoek L, Voss D, Bader O, Lehmann D, Schulz AR, Kallies S, Suliman T, Fielding BC, Drosten C, et al. Human coronavirus NL63 open reading frame 3 encodes a virion-incorporated N-glycosylated membrane protein[J]. Virology Journal, 2010, 7:6
    [28] Dedeurwaerder A, Desmarets LM, Olyslaegers DAJ, Vermeulen BL, Dewerchin HL, Nauwynck HJ. The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes[J]. Veterinary Microbiology, 2013, 162(2013):447-455
    [29] Dedeurwaerder A, Olyslaegers DAJ, Desmarets LMB, Roukaerts IDM, Theuns S, Nauwynck HJ. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response[J]. Journal of General Virology, 2014, 95(2):393-402
    [30] Wang K, Lu W, Chen JF, Xie SQ, Shi HY, Hsu H, Yu WJ, Xu K, Bian C, Fischer WB, et al. PEDV ORF3 encodes an ion channel protein and regulates virus production[J]. FEBS Letters, 2012, 586(4):384-391
    [31] Zou DH, Xu JX, Duan XL, Xu X, Li PF, Cheng LX, Zheng L, Li XZ, Zhang YT, Wang XH, et al. Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic Reticulum stress to facilitate autophagy[J]. Veterinary Microbiology, 2019, 235:209-219
    [32] Si FS, Hu XX, Wang CY, Chen BQ, Wang RY, Dong SJ, Yu RS, Li Z. Porcine epidemic diarrhea virus (PEDV) ORF3 enhances viral proliferation by inhibiting apoptosis of infected cells[J]. Viruses, 2020, 12(2):214
    [33] Si FS, Chen BQ, Hu XX, Yu RS, Dong SJ, Wang RY, Li Z. Porcine epidemic diarrhea virus ORF3 protein is transported through the exocytic pathway[J]. Journal of Virology, 2020, 94(17):e00808-20
    [34] Kaewborisuth C, Koonpaew S, Srisutthisamphan K, Viriyakitkosol R, Jaru-Ampornpan P, Jongkaewwattana A. PEDV ORF3 independently regulates IκB kinase β-mediated NF-κB and IFN-β promoter activities[J]. Pathogens, 2020, 9(5):376
    [35] Cruz JLG, Sola I, Becares M, Alberca B, Plana J, Enjuanes L, Zuñiga S. Coronavirus gene 7 counteracts host defenses and modulates virus virulence[J]. PLoS Pathogens, 2011, 7(6):e1002090
    [36] Beidas M, Chehadeh W. Effect of human coronavirus OC43 structural and accessory proteins on the transcriptional activation of antiviral response elements[J]. Intervirology, 2018, 61(1):30-35
    [37] Zhang RH, Wang K, Ping XQ, Yu WJ, Qian ZK, Xiong SD, Sun B. The ns12.9 accessory protein of human coronavirus OC43 is a viroporin involved in virion morphogenesis and pathogenesis[J]. Journal of Virology, 2015, 89(22):11383-11395
    [38] Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, Suliman T, Barchet W, Weber F, Drosten C, Muller MA. Middle east respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist[J]. Journal of Virology, 2013, 87(22):12489-12495
    [39] Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling[J]. Journal of General Virology, 2014, 95(4):874-882
    [40] Gutierrez-Alvarez J, Wang L, Fernandez-Delgado R, Li K, McCray PB Jr, Perlman S, Sola I, Zuñiga S, Enjuanes L. Middle east respiratory syndrome coronavirus gene 5 modulates pathogenesis in mice[J]. Journal of Virology, 2020, 95(3):e01172-20
    [41] Lee JY, Bae S, Myoung J. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-β promoter activation:its implication for vaccine design[J]. Journal of Microbiology, 2019, 57(9):803-811
    [42] Comar CE, Goldstein SA, Li Y, Yount B, Baric RS, Weiss SR. Antagonism of dsRNA-Induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection[J]. mBio, 2019, 10(2):e00319-19
    [43] Koetzner CA, Kuo LL, Goebel SJ, Dean AB, Parker MM, Masters PS. Accessory protein 5a is a major antagonist of the antiviral action of interferon against murine coronavirus[J]. Journal of Virology, 2010, 84(16):8262-8274
    [44] Ito N, Mossel EC, Narayanan K, Popov VL, Huang C, Inoue T, Peters CJ, Makino S. Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein[J]. Journal of Virology, 2005, 79(5):3182-3186
    [45] Law PTW, Wong CH, Au TCC, Chuck CP, Kong SK, Chan PKS, To KF, Lo AWI, Chan JYW, Suen YK, et al. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells[J]. Journal of General Virology, 2005, 86(7):1921-1930
    [46] Yuan XL, Shan YJ, Yao ZY, Li JY, Zhao ZH, Chen JP, Cong YW. Mitochondrial location of severe acute respiratory syndrome coronavirus 3b protein[J]. Molecules and Cells, 2006, 21(2):186-191
    [47] Geng H, Liu YM, Chan WS, Lo AWI, Au DMY, Waye MMY, Ho YY. The putative protein 6 of the severe acute respiratory syndrome-associated coronavirus:expression and functional characterization[J]. FEBS Letters, 2005, 579(30):6763-6768
    [48] Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses[J]. Antiviral Research, 2014, 109:97-109
    [49] Wong HH, Fung TS, Fang SG, Huang M, Le MT, Liu DX. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3[J]. Virology, 2018, 515:165-175
    [50] Ren YJ, Shu T, Wu D, Mu JF, Wang C, Huang MH, Han Y, Zhang XY, Zhou W, Qiu Y, et al. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells[J]. Cellular & Molecular Immunology, 2020, 17(8):881-883
    [51] Zhang J, Cruz-Cosme R, Zhuang MW, Liu DX, Liu Y, Teng SL, Wang PH, Tang QY. A systemic and molecular study of subcellular localization of SARS-CoV-2 proteins[J]. Signal Transduction and Targeted Therapy, 2020, 5:269
    [52] Flower TG, Buffalo CZ, Hooy RM, Allaire M, Ren XF, Hurley JH. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(2):e2021785118
    [53] Zinzula L. Lost in deletion:the enigmatic ORF8 protein of SARS-CoV-2[J]. Biochemical and Biophysical Research Communications, 2021, 538:116-124
    [54] Wu J, Shi Y, Pan XY, Wu S, Hou RX, Zhang Y, Zhong TS, Tang H, Du W, Wang LY, et al. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO[J]. Cell Reports, 2021, 34(7):108761
    [55] Laconi A, van Beurden SJ, Berends AJ, Krämer-Kühl A, Jansen CA, Spekreijse D, Chénard G, Philipp HC, Mundt E, Rottier PJM, et al. Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo[J]. Journal of General Virology, 2018, 99(10):1381-1390
    [56] Kint J, Dickhout A, Kutter J, Maier HJ, Britton P, Koumans J, Pijlman GP, Fros JJ, Wiegertjes GF, Forlenza M. Infectious bronchitis coronavirus inhibits STAT1 signaling and requires accessory proteins for resistance to type I interferon activity[J]. Journal of Virology, 2015, 89(23):12047-12057
    [57] Zhao Y, Cheng JL, Yan SH, Jia WF, Zhang KR, Zhang GZ. S gene and 5a accessory gene are responsible for the attenuation of virulent infectious bronchitis coronavirus[J]. Virology, 2019, 533:12-20
    [58] Zhang MJ, Li W, Zhou P, Liu DJ, Luo R, Jongkaewwattana A, He QG. Genetic manipulation of porcine Deltacoronavirus reveals insights into NS6 and NS7 functions:a novel strategy for vaccine design[J]. Emerging Microbes & Infections, 2020, 9(1):20-31
    [59] Choi S, Lee C. Functional characterization and proteomic analysis of porcine Deltacoronavirus accessory protein NS7[J]. Journal of Microbiology and Biotechnology, 2019, 29(11):1817-1829
    [60] Fang PX, Fang LR, Ren J, Hong YY, Liu XR, Zhao YY, Wang D, Peng GQ, Xiao SB. Porcine Deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA[J]. Journal of Virology, 2018, 92(15):e00712-18
    [61] Fang PX, Fang LR, Xia SJ, Ren J, Zhang JS, Bai DC, Zhou YR, Peng GQ, Zhao SH, Xiao SB. Porcine Deltacoronavirus accessory protein NS7a antagonizes IFN-β production by competing with TRAF3 and IRF3 for binding to IKKε[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10:257
    [62] Qin P, Luo WT, Su Q, Zhao PW, Zhang YQ, Wang B, Yang YL, Huang YW. The porcine Deltacoronavirus accessory protein NS6 is expressed in vivo and incorporated into virions[J]. Virology, 2021, 556:1-8
    [63] Woods RD. Efficacy of a transmissible gastroenteritis coronavirus with an altered ORF-3 gene[J]. Canadian Journal of Veterinary Research, 2001, 65(1):28-32
    [64] McGoldrick A, Lowings JP, Paton DJ. Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF 3a[J]. Archives of Virology, 1999, 144(4):763-770
    [65] Tekes G, Hofmann-Lehmann R, Bank-Wolf B, Maier R, Thiel HJ, Thiel V. Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage[J]. Journal of Virology, 2010, 84(3):1326-1333
    [66] Lu W, Zheng BJ, Xu K, Schwarz W, Du LY, Wong CKL, Chen JD, Duan SM, Deubel V, Sun B. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33):12540-12545
    [67] Bianchi M, Borsetti A, Ciccozzi M, Pascarella S. SARS-Cov-2 ORF3a:mutability and function[J]. International Journal of Biological Macromolecules, 2021, 170:820-826
    [68] Ye SY, Li ZH, Chen FZ, Li WT, Guo XZ, Hu H, He QG, Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV[J]. Virus Genes, 2015, 51(3):385-392
    [69] Hu XX, Yu RS, Si FS, Chen BQ, Dong SJ, Song ZF, Li Z. ORF3 protein promotes the proliferation of porcine epidemic diarrhea virus on Vero cells[J]. Microbiology China, 2018, 45(7):1508-1517(in Chinese)胡晓霞, 于瑞嵩, 司伏生, 陈冰清, 董世娟, 宋增福, 李震. ORF3蛋白促进猪流行性腹泻病毒在Vero细胞上的增殖[J]. 微生物学通报, 2018, 45(7):1508-1517
    [70] Padhan K, Minakshi R, Towheed MAB, Jameel S. Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. Journal of General Virology[J]. 2008, 89(8):1960-1969
    [71] Zhao F, Sun Y, Qian BX, Zhang XR, Wu YT. Complete genome characterization of Chinese porcine Deltacoronavirus strain CHN/Tianjin/2016[J]. Genome Announcements, 2017, 5(16):e00237-17
    [72] Fang PX, Fang LR, Hong YY, Liu XR, Dong N, Ma PP, Bi J, Wang D, Xiao SB. Discovery of a novel accessory protein NS7a encoded by porcine Deltacoronavirus[J]. Journal of General Virology, 2017, 98(2):173-178
    [73] Masters PS. The molecular biology of coronaviruses[J]. Advances in Virus Research, 2006, 66:193-292
    [74] Nal B, Chan CM, Kien F, Siu L, Tse J, Chu K, Kam J, Staropoli I, Crescenzo-Chaigne B, Escriou N, et al. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E[J]. Journal of General Virology, 2005, 86(5):1423-1434
    [75] McBride CE, Li J, Machamer CE. The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic Reticulum retrieval signal that binds COPI and promotes interaction with membrane protein[J]. Journal of Virology, 2007, 81(5):2418-2428
    [76] Hou YX, Meulia T, Gao X, Saif LJ, Wang QH. Deletion of both the tyrosine-based endocytosis signal and the endoplasmic Reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs[J]. Journal of Virology, 2019, 93(2):e01758-18
    [77] Tan YJ, Teng E, Shen S, Tan THP, Goh PY, Fielding BC, Ooi EE, Tan HC, Lim SG, Hong WJ. A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis[J]. Journal of Virology, 2004, 78(13):6723-6734
    [78] Tan YJ. The Severe Acute Respiratory Syndrome (SARS)-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein[J]. Virology Journal, 2005, 2(1):5
    [79] Netland J, Ferraro D, Pewe L, Olivares H, Gallagher T, Perlman S. Enhancement of murine coronavirus replication by severe acute respiratory syndrome coronavirus protein 6 requires the N-terminal hydrophobic region but not C-terminal sorting motifs[J]. Journal of Virology, 2007, 81(20):11520-11525
    [80] Fielding BC, Tan YJ, Shuo S, Tan THP, Ooi EE, Lim SG, Hong WJ, Goh PY. Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus[J]. Journal of Virology, 2004, 78(14):7311-7318
    [81] Florek D, Ehmann R, Kristen-Burmann C, Lemmermeyer T, Lochnit G, Ziebuhr J, Thiel HJ, Tekes G. Identification and characterization of a Golgi retention signal in feline coronavirus accessory protein 7b[J]. Journal of General Virology, 2017, 98(8):2017-2029
    [82] Shi N, Ye S, Alam A, Chen LP, Jiang YX. Atomic structure of a Na+-and K+-conducting channel[J]. Nature, 2006, 440(7083):570-574
    [83] Chan CM, Tsoi H, Chan WM, Zhai SY, Wong CO, Yao XQ, Chan WY, Tsui SKW, Chan HYE. The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function[J]. The International Journal of Biochemistry & Cell Biology, 2009, 41(11):2232-2239
    [84] Azad GK, Khan PK. Variations in Orf3a protein of SARS-CoV-2 alter its structure and function[J]. Biochemistry and Biophysics Reports, 2021, 26:100933
    [85] Gupta AM, Chakrabarti J, Mandal S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants[J]. Microbes and Infection, 2020, 22(10):598-607
    [86] Wang MJ, Li MJ, Ren RT, Li LF, Chen EQ, Li WM, Ying BW. International expansion of a novel SARS-CoV-2 mutant[J]. Journal of Virology, 2020, 94(12):e00567-20
    [87] Majumdar P, Niyogi S. ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection[J]. Epidemiology and Infection, 2020, 148:e262
    [88] Lee SF, Li YJ, Halperin SA. Overcoming Codon-usage bias in heterologous protein expression in Streptococcus gordonii[J]. Microbiology, 2009, 155(11):3581-3588
    [89] Chen Y, Xu QM, Yuan XM, Li XX, Zhu T, Ma YM, Chen JL. Analysis of the Codon usage pattern in Middle East Respiratory Syndrome Coronavirus[J]. Oncotarget, 2017, 8(66):110337-110349
    [90] Hou W. Characterization of Codon usage pattern in SARS-CoV-2[J]. Virology Journal, 2020, 17(1):1-10
    [91] Xu X, Li PF, Zhang YT, Wang XH, Xu JX, Wu XN, Shen YJ, Guo DX, Li YC, Yao LL, et al. Comprehensive analysis of synonymous Codon usage patterns in orf3 gene of porcine epidemic diarrhea virus in China[J]. Research in Veterinary Science, 2019, 127:42-46
    [92] Li YQ, Huang XB, Qing Y, Zhang YD, Chen J, Wen XT, Cao SJ, Wen YP, Wu R. Bioinformatics analysis and truncated expression of ORF3 protein of porcine epidemic diarrhea virus in E. coli[J]. Chinese Veterinary Science, 2016, 46(6):723-730(in Chinese)李亚青, 黄小波, 卿盈, 张雨迪, 陈杰, 文心田, 曹三杰, 文翼平, 伍锐. 猪流行性腹泻病毒ORF3蛋白的生物信息分析及截短原核表达的研究[J]. 中国兽医科学, 2016, 46(6):723-730
    [93] Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181(4):914-921
    [94] Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ, Zambon M, Ellis J, Lewis PA, Hiscox JA, et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein[J]. Genome Medicine, 2020, 12(1):68
    [95] Michel CJ, Mayer C, Poch O, Thompson JD, Characterization of accessory genes in coronavirus genomes[J]. Virology Journal, 2020, 17:131
    [96] Hassan SS, Choudhury PP, Roy B. Rare mutations in the accessory proteins ORF6, ORF7b, and ORF10 of the SARS-CoV-2 genomes[J]. Meta Gene, 2021, 28:100873
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

司伏生,姜黎,于瑞嵩,董世娟,谢春芳,陈冰清,李震. 附属蛋白:冠状病毒不容忽视的一类蛋白[J]. 微生物学通报, 2021, 48(10): 3895-3909

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-25
  • 录用日期:2021-02-20
  • 在线发布日期: 2021-10-12
文章二维码