科微学术

微生物学通报

基于转录组学与蛋白质组学对猪丹毒丝菌耐药性的研究
作者:
基金项目:

国家星火计划重点项目(2014GA710002);安徽省重点研究与开发计划(面上攻关)项目(201904a06020013);安徽省长三角联合科技攻关项目(1101c0603065);安徽省生猪产业体系基金(皖农科[2016]84号)


Study on the resistance of Erysipelothrix rhusiopathiae based on transcriptomics and proteomics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] β-内酰胺类(β-lactams)抗生素是防治猪丹毒的常用药物,其中青霉素(Penicillin,PG)更是首选药物。[目的] 运用转录组学与蛋白质组学方法初步探究猪丹毒丝菌(Erysipelothrix rhusiopathiaeE.rhusiopathiae)产生PG抗性的机制,为进一步开展E.rhusiopathiae耐药机制的研究奠定基础。[方法] 采用K-B纸片法和微量稀释法分别测定受试菌株AEr51、AEr31和AErS对26种抗生素的感受性及对PG、阿莫西林(AMX)和氨苄西林(AMP)的最小抑菌浓度(Minimun Inhibitory Concentration,MIC);然后通过转录组学测序(RNA-Seq)技术和串联质谱标签法(Tandem Mass Tag,TMT)定量蛋白质组学技术进一步探究猪丹毒丝菌产生PG抗性的分子机制。[结果] AEr51、AEr31和AErS对26种抗生素耐药率分别为34.62%、26.92%和34.62%,其中AErS和AEr31对所有β-lactams抗生素敏感,而AEr51除对PG耐药外,对其他β-lactams抗生素均敏感;AEr51、AEr31和AErS对PG、AMX、AMP的MIC分别为32、4、2 μg/mL,0.25、0.50、0.50 μg/mL和0.125、0.500、0.250μg/mL;RNA-Seq分析显示AEr51/AErS比较组中共筛到668个差异基因,其中上调434个、下调234个,AEr51/AEr31比较组中共筛到403个差异基因,其中上调275个、下调128个,差异表达基因主要富集于代谢途径、ABC转运系统、β-内酰胺抗性、双组分信号传导系统等通路,而且与RT-qPCR验证结果基本一致;TMT分析显示AEr51/AErS比较组中共筛到167个差异蛋白,其中上调86个、下调81个,AEr51/AEr31比较组中共筛到159个差异蛋白,其中上调80个、下调79个,差异表达蛋白显著富集于微生物、氨基酸、碳、硫、嘧啶代谢等相关的代谢通路,而且与平行反应监视(Parallel Reaction Monitoring,PRM)靶向验证结果基本一致。[结论] ABC转运系统、双组分信号传导系统、β-内酰胺抗性等通路在猪丹毒丝菌对青霉素耐药性产生过程中发挥重要作用,同时伴随微生物、氨基酸、碳、硫、嘧啶代谢等生命过程。

    Abstract:

    [Background] β-lactam antibiotics are commonly used drugs for the prevention and treatment of swine erysipelas, and penicillin (PG) is the preferred drug. [Objective] The use of transcriptomics and proteomics methods to preliminarily explore the mechanism of Erysipelothrix rhusiopathiae (E. rhusiopathiae) producing penicillin resistance, laying a foundation for further research on the resistance mechanism of E. rhusiopathiae. [Methods] The susceptibility to 26 antibiotics and the minimum inhibitory concentration (MIC) to PG, amoxicillin (AMX) and ampicillin (AMP) of the tested strains AErS, AEr51 and AEr31 were determined by the Kirby-Bauer disk diffusion method and the microdilution method; Then through transcriptomics sequencing (RNA-Seq) technology and tandem mass tag (TMT) quantitative proteomics technology to further explore the molecular mechanism of E. rhusiopathiae producing penicillin resistance. [Results] The resistance rates of AErS, AEr51 and AEr31 to 26 antibiotics were 34.62%, 34.62%, and 26.92%, respectively. AErS and AEr31 were sensitive to all β-lactams antibiotics, while AEr51 was sensitive to other β-lactams antibiotics except PG; the MICs of AErS, AEr51 and AEr31 to PG, AMX and AMP were 0.125, 0.500, 0.250 μg/mL, 32, 4, 2 μg/mL and 0.25, 0.50, 0.50 μg/mL, respectively; RNA-Seq analysis showed a total of 668 differential genes were screened in the AEr51/AErS comparison group, of which 434 were up-regulated and 234 were down-regulated. In the AEr51/AEr31 comparison group, a total of 403 differential genes were screened, of which 275 were up-regulated and 128 were down-regulated. The differentially expressed genes were mainly enriched in the metabolic pathway, ABC transport system, two-component signal transduction system, β-lactam resistance and other pathways, and the results of RT-qPCR verification were basically the same; TMT analysis showed that a total of 167 differential proteins were screened in the AEr51/AErS comparison group, among which 86 were up-regulated and 81 were down-regulated. A total of 159 differential proteins were screened in the AEr51/AEr31 comparison group, of which 80 were up-regulated and 79 were down-regulated. Differentially expressed proteins were significantly enriched in metabolic pathways related to microorganisms, amino acids, carbon, sulfur, and pyrimidine metabolism, and the results of PRM targeting verification were basically the same [Conclusion] ABC transport system, two-component signal transduction system, β-lactam resistance and other pathways played an important role in the development of E. rhusiopathiae resistance to PG, and were accompanied by life processes, such as microorganisms, amino acid, carbon, sulfur, and pyrimidine metabolism, etc.

    参考文献
    [1] Chen PY. Veterinary Lemology[M]. Beijing:China Agriculture Press, 2015:251-252(in Chinese)陈溥言. 兽医传染病学[M]. 北京:中国农业出版社, 2015:251-252
    [2] Opriessnig T, Forde T, Shimoji Y. Erysipelothrix spp.:past, present, and future directions in vaccine research[J]. Frontiers in Veterinary Science, 2020, 7:174
    [3] Ersdal C, Jørgensen HJ, Lie KI. Acute and chronic Erysipelothrix rhusiopathiae infection in lambs[J]. Veterinary Pathology, 2015, 52(4):635-643
    [4] Bender JS, Irwin CK, Shen HG, Schwartz KJ, Opriessnig T. Erysipelothrix spp. genotypes, serotypes, and surface protective antigen types associated with abattoir condemnations[J]. Journal of Veterinary Diagnostic Investigation, 2011, 23(1):139-142
    [5] Chen ZL, Zeng ZL. Veterinary Pharmacology[M]. Beijing:China Agriculture Press, 2017:235(in Chinese)陈杖榴, 曾振灵. 兽医病理学[M]. 北京:中国农业出版社, 2017:235
    [6] Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from Gram-negative bacteria[J]. Annual Review of Microbiology, 2011, 65(1):455-478
    [7] Lambert PA. Bacterial resistance to antibiotics:modified target sites[J]. Advanced Drug Delivery Reviews, 2005, 57(10):1471-1485
    [8] Qi YX, Liu YB, Rong WH. RNA-Seq and its applications:a new technology for transcriptomics[J]. Hereditas, 2011, 33(11):1191-1202(in Chinese)祁云霞, 刘永斌, 荣威恒. 转录组研究新技术:RNA-Seq及其应用[J]. 遗传, 2011, 33(11):1191-1202
    [9] Qiu P, Guo YR, Zhang ZH, Fan CL, Zhang DX, Cui CC, Liu MC. Progress in drug resistance mechanism of bacteria based on transcriptome technology[J]. China Poultry, 2019, 41(4):45-49(in Chinese)裘鹏, 郭玉茹, 张泽辉, 范春玲, 张德显, 崔璨璨, 刘明春. 基于转录组学技术分析细菌耐药机制的研究进展[J]. 中国家禽, 2019, 41(4):45-49
    [10] Guo YR, Qiu P, Su HY, Gao X, Zhang DX, Zhang LY, Liu MC. Progress on bacterial resistance based on proteomics technology[J]. Progress in Veterinary Medicine, 2019, 40(9):89-92(in Chinese)郭玉茹, 裘鹏, 苏鸿雨, 高翔, 张德显, 张路遥, 刘明春. 基于蛋白质组学技术的细菌耐药性研究进展[J]. 动物医学进展, 2019, 40(9):89-92
    [11] Li L, Wang L, Wang WJ, Zhang RL, Xu J, Wang R, Zhao X. Fluoroquinolone resistant Salmonella proteomics analysis based on tandem mass tag and parallel reaction monitoring techniques[J]. Microbiology China, 2018, 45(7):1535-1545(in Chinese)李琳, 王磊, 王文静, 张瑞良, 徐军, 王瑞, 赵霞. 基于串联质谱标签法和平行反应监测技术的氟喹诺酮耐药沙门菌蛋白质组学分析[J]. 微生物学通报, 2018, 45(7):1535-1545
    [12] Lu P, Huang XH, Li CF, Wei WT, Sun P, Wei JZ, Li Y. Isolation, identification and characterization of Erysipelothrix rhusiopathiae in Anhui province[J]. Microbiology China, 2014, 41(9):1822-1828(in Chinese)陆萍, 黄晓慧, 李春芬, 魏文涛, 孙裴, 魏建忠, 李郁. 安徽部分地区猪丹毒杆菌的分离鉴定及生物学特性研究[J]. 微生物学通报, 2014, 41(9):1822-1828
    [13] Gong Z, Zhang JJ, Zhong DK. Biological characteristics and antibiotic resistance of Erysipelothrix rhusiopathiae isolated from East China[J]. Biotechnology Bulletin, 2020, 36(6):174-182(in Chinese)龚争, 张俊杰, 钟登科. 华东地区猪丹毒杆菌分离株的生物学特征及其耐药性分析[J]. 生物技术通报, 2020, 36(6):174-182
    [14] Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. Biology of Acinetobacter baumannii:pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7:55
    [15] Poole K. Multidrug resistance in Gram-negative bacteria[J]. Current Opinion in Microbiology, 2001, 4(5):500-508
    [16] Yu J, Schneiders T. Tigecycline challenge triggers sRNA production in Salmonella enterica serovar Typhimurium[J]. BMC Microbiology, 2012, 12:195
    [17] Bush K. Overcoming β-lactam resistance in Gram-negative pathogens[J]. Future Medicinal Chemistry, 2016, 8(9):921-924
    [18] Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. Genetic control of bacterial biofilms[J]. Journal of Applied Genetics, 2016, 57(2):225-238
    [19] Fisher JF, Mobashery S. β-lactam resistance mechanisms:Gram-positive bacteria and Mycobacterium tuberculosis[J]. Cold Spring Harbor Perspectives in Medicine, 2016, 6(5):a025221
    [20] Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-Seq:accounting for selection bias[J]. Genome Biology, 2010, 11(2):R14
    [21] Reza A, Sutton JM, Rahman KM. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in Gram-negative (ESKAPEE) bacteria[J]. Antibiotics, 2019, 8(4):229
    [22] Zhou W. Study on the quinolone resistance mechanism of Vibrio harveyi selected in vitro[D]. Zhanjiang:Master's Thesis of Guangdong Ocean University, 2016(in Chinese)周维. 体外诱导哈维氏弧菌对喹诺酮类药物耐药机制的研究[D]. 湛江:广东海洋大学硕士学位论文, 2016
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐正露,朱艳艳,李琳,李亮,刘雪兰,孙裴,李郁. 基于转录组学与蛋白质组学对猪丹毒丝菌耐药性的研究[J]. 微生物学通报, 2021, 48(10): 3736-3752

复制
分享
文章指标
  • 点击次数:411
  • 下载次数: 1321
  • HTML阅读次数: 1434
  • 引用次数: 0
历史
  • 收稿日期:2021-01-12
  • 录用日期:2021-02-10
  • 在线发布日期: 2021-10-12
文章二维码