科微学术

微生物学通报

一株低温木质素降解菌的筛选、产酶优化及酶学性质
作者:
基金项目:

国家重点研发计划专项(2018YFD0501800,2016YFD0501400);国家现代农业产业技术体系建设专项(CARS-37);吉林省科技发展计划项目(20190201296JC);吉林省教育厅项目(JJKH20180643KJ)


Screening, enzyme-production optimization and enzymatic properties of a low-temperature lignin-degrading bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [背景] 我国北方地区秋冬两季平均气温较低,低温环境使得秸秆更难自然降解。[目的] 筛选高效低温木质素降解菌,探索其酶学特性并提高其产酶性能和秸秆降解效率。[方法] 通过苯胺蓝法和酶活测定对菌株进行筛选,以Lip、Lac、Mnp酶活力为评价指标,采用单因素和响应面法进行产酶条件优化及酶学性质研究,通过固态发酵试验研究其对秸秆的降解效率。[结果] 筛选到一株高效菌LS-1,经形态学和分子生物学鉴定其为嗜麦芽窄食单胞菌。菌株LS-1在木质素为碳源、蛋白胨为氮源、pH 8.0、培养温度15℃、培养时间3 d时产酶效果最佳,其中Lip酶活力为23.34 U/mL、Lac酶活力为9.37 U/mL、Mnp酶活力为50.89 U/mL。Lip和Lac最适作用温度为30℃且热稳定性良好,Mnp最适作用温度为50℃但热稳定性较差。Lac最适作用pH 4.0且耐酸性较好,Lip和Mnp最适作用pH 5.0;0.75 mmol/L Mg2+和0.5%吐温-20对Lip有促进作用,1 mmol/L Cu2+和丁香酸对Lac有促进作用,0.1%—0.5%吐温-20均对Mnp有促进作用。15℃固态发酵后,秸秆失重率达18.85%,木质素降解率达36.14%,比对照组提高约6倍以上。[结论] 本研究为低温木质素高效降解提供了优质菌种资源,在秸秆降解方面具有良好的应用前景。

    Abstract:

    [Background] In northern China, the average temperature in autumn and winter is low, which makes straw more difficult to degrade naturally.[Objective] Screening high efficiency lignin-degrading bacteria of low-temperature, explore enzymatic properties and improve enzyme-producing performance and straw degradation efficiency.[Methods] High efficiency lignin degradation strains were screened by aniline blue method and enzyme activity determination, and the enzymatic production conditions were optimized by single-factor screening and response surface experiment, and the degradation efficiency of straw was determined through solid-state fermentation experiments.[Results] An efficient lignin-degradation strain LS-1 was screened and identified as Stenotrophomonas maltophilia. When the carbon and nitrogen sources of LS-1 were lignin and pepone, pH 8.0, temperature 15℃, time 3 days, the activities of Lip, Lac and Mnp were 23.34 U/mL, 9.37 U/mL and 50.89 U/mL, respectively. The optimal temperature of Lip and Lac was 30℃ and the thermal stability was well, while the optimal temperature of Mnp was 50℃ and the thermal stability was poor, the optimum action environment of the three enzymes was acidic. 0.75 mmol/L Mg2+ and 0.5% Tween-20 can promote Lip activity, 1 mmol/L Cu2+ and syringic acid can promote Lac activity, and 0.1%—0.5% Tween-20 can promote Mnp activity. After low-temperature solid-state fermentation, the weight loss rate of straw was 18.85%, and the lignin degradation rate was 36.14%, which was about 6 times higher than that of the control group.[Conclusion] This experimental provides high-quality bacterial resources for the efficient degradation of low-temperature lignin and has a well application prospect in straw degradation.

    参考文献
    [1] Yu MT, Li CY, Li HT, Liu CL. Research progress in effect of straw returning on soil physical and chemical properties[J]. Acta Agriculturae Jiangxi, 2021, 33(1):33-39(in Chinese)于美婷, 李春雅, 李华泰, 刘长莉. 秸秆还田对土壤理化性质影响的研究进展[J]. 江西农业学报, 2021, 33(1):33-39
    [2] Mei JF, Shen XB, Gang LP, Xu HJ, Wu FF, Sheng LQ. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently[J]. Bioresource Technology, 2020, 310:123445
    [3] Liu QQ, Luo L, Zheng LQ. Lignins:biosynthesis and biological functions in plants[J]. International Journal of Molecular Sciences, 2018, 19(2):335
    [4] Mccann MC, Carpita NC. Biomass recalcitrance:a multi-scale, multi-factor, and conversion-specific property[J]. Journal of Experimental Botany, 2015, 66(14):4109-4118
    [5] Chi ZX, Wang Z, Liu Y, Yang GH. Preparation of organosolv lignin-stabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater[J]. Chemical Engineering Journal, 2018, 331:317-325
    [6] Kang ZC. Construction and functional evaluation of novel lignocellulose degradation microbial consortia at low temperature[D]. Beijing:Master's Thesis of University of Chinese Academy of Sciences, 2019(in Chinese)康志超. 耐低温木质纤维素降解菌群的构建及其应用研究[D]. 北京:中国科学院大学硕士学位论文, 2019
    [7] Zhang HY, Liu MZ, Zhang JJ. Decomposition law of organic materials in dryland soil[J]. Soils and Fertilizers, 1986(4):7-11(in Chinese)张洪源, 刘明钟, 张家建. 有机物料在旱地土壤中分解规律的研究[J]. 土壤肥料, 1986(4):7-11
    [8] Zheng GX, Yin T, Lu ZX, Boboua SYB, Li JC, Zhou WL. Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability[J]. Bioresource Technology, 2020, 304:123064
    [9] Zhou HZ, Guo W, Xu B, Teng ZW, Tao DP, Lou YJ, Gao YH. Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis[J]. Microbial Pathogenesis, 2017, 112:63-69
    [10] Tien M, Kirk TK. Lignin-degrading enzyme from Phanerochaete chrysosporium:purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(8):2280-2284
    [11] Chauhan PS. Role of various bacterial enzymes in complete depolymerization of lignin:a review[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23:101498
    [12] Biko O, Viljoen-Bloom M, Zyl W. Microbial lignin peroxidases:applications, production challenges and future perspectives[J]. Enzyme and Microbial Technology, 2020, 141:109669
    [13] Zhang ST, Xiao JL, Wang G, Chen G. Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products[J]. Bioresource Technology, 2020, 304:122975
    [14] Shang J, Liu JF, Long Q, Chen X, Zhang KW. Screening of high yield manganese peroxidase white-rot fungi for bioprocessing of wheat straw and optimization of enzyme production conditions[J]. Feed Research, 2020, 43(6):63-67(in Chinese)尚洁, 刘继芳, 陇琼, 陈湘, 张靠稳. 小麦秸秆产锰过氧化物酶白腐真菌的筛选及产酶条件优化[J]. 饲料研究, 2020, 43(6):63-67
    [15] Nayana P, Aiswarya C, Aparna CK, Nambisan P. Dataset on optimization of lignin peroxidase production by Endomelanconiopsis sp. under submerged fermentation using one factor at a time approach[J]. Data in Brief, 2020, 29:105244
    [16] Guo HW, Chang J, Yin QQ, Wang P, Lu M, Wang X, Dang XW. Effect of the combined physical and chemical treatments with microbial fermentation on corn straw degradation[J]. Bioresource Technology, 2013, 148:361-365
    [17] Zhao M, Qian C. Study on the examination of oxidative system in white-rot fungi and its laccase production by induction[J]. Transactions of China Pulp and Paper, 2005(2):101-105(in Chinese)赵敏, 钱程. 白腐菌木素氧化酶系的检测及其漆酶诱导产生的研究[J]. 中国造纸学报, 2005(2):101-105
    [18] Wariishi H, Valli K, Gold MH. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators[J]. Journal of Biological Chemistry, 1992, 267(33):23688-23695
    [19] Wolfenden BS, Willson RL. Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions:pulse radiolysis studies of 2, 2ʹ-azinobis-(3-ethylbenzthiazoline-6-sulphonate)[J]. Journal of the Chemical Society Perkin Transactions, 1982(7):805-812
    [20] Tsang LJ, Reid ID, Coxworth EC. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions[J]. Applied and Environmental Microbiology, 1987, 53(6):1304-1306
    [21] Dong XZ, Cai MY. Manual for Identification of Common Bacterial Systems[M]. Beijing:Science Press, 2001(in Chinese)东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001
    [22] Fan ZY. Isolation and degradation characterization of cellulose-degrading microorganisms under low temperature[D]. Hohhot:Master's Thesis of Inner Mongolia Agricultural University, 2012(in Chinese)樊兆阳. 低温降解纤维素的微生物的分离及其降解特性分析[D]. 呼和浩特:内蒙古农业大学硕士学位论文, 2012
    [23] Zhang SH, Liu XH, Liang F, Wang L, Liu YH, Zhai XL, Zhao LF. Screening of cryophilic cellulose-degradable bacterium and its zymological properties[J]. Journal of Microbiology, 2009, 29(3):97-100(in Chinese)张淑红, 刘秀花, 梁峰, 王莉, 刘源慧, 翟兴礼, 赵龙飞. 低温纤维素降解菌的筛选及其酶学性质初步研究[J]. 微生物学杂志, 2009, 29(3):97-100
    [24] Luo LJ, Wan L, Chen H, Wen CL, Xu FL, Jia W, Nie YL, Yuan HL. Enrichment culturing and bacterial community structures analysis of a cold-adapted lignocellulose degrading microflora[J]. Journal of Agricultural Biotechnology, 2015, 23(6):727-737(in Chinese)罗立津, 万立, 陈宏, 温翠莲, 徐福乐, 贾纬, 聂毅磊, 袁红莉. 耐低温木质纤维素降解菌群的富集培养及其种群结构分析[J]. 农业生物技术学报, 2015, 23(6):727-737
    [25] Yin J, Liu YQ, Yu F, Cai JC, Liu TY. Screening and identification of a lignin-degrading bacterium and its application in composting[J]. Soil and Fertilizer Sciences in China, 2019(3):179-185(in Chinese)尹静, 刘悦秋, 于峰, 蔡建超, 刘天月. 一株木质素降解菌的筛选鉴定及其在堆肥中的应用[J]. 中国土壤与肥料, 2019(3):179-185
    [26] Zhao XY, Xing ZT, Shao Y, Liu HY, Wang XC. Preliminary study on enzyme property of Grifola frondosa extracellular laccase[J]. Natural Product Research and Development, 2012, 24(6):824-827(in Chinese)赵晓燕, 邢增涛, 邵毅, 刘海燕, 汪学才. 灰树花漆酶酶学性质的初步研究[J]. 天然产物研究与开发, 2012, 24(6):824-827
    [27] Xiao C, Liu J, Xu XH. Studies on enzymatic properties of laccase from Auricularia[J]. Chinese Agricultural Science Bulletin, 2011, 27(25):158-161(in Chinese)肖楚, 刘佳, 许修宏. 黑木耳漆酶酶学性质的研究[J]. 中国农学通报, 2011, 27(25):158-161
    [28] Kong LY, Guo DS, Zhao BG, Li RG. Preliminary purification and characterization of extracellular lignin peroxidase from Pseudomonas fluorescens GcM5-1A[J]. Journal of Beijing Forestry University, 2010, 32(3):112-116(in Chinese)孔令营, 郭道森, 赵博光, 李荣贵. 荧光假单胞菌GcM5-1A胞外木质素过氧化物酶的初步纯化及性质研究[J]. 北京林业大学学报, 2010, 32(3):112-116
    [29] Cheng XB. Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17, and decolorization of azo dyes by the enzyme[D]. Hefei:Master's Thesis of Anhui University, 2007(in Chinese)程晓滨. 裂褶菌F17锰过氧化物酶的分离纯化及其对偶氮染料脱色的研究[D]. 合肥:安徽大学硕士学位论文, 2007
    [30] Baldrian P. Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30(2):215-242
    [31] Qin X, Zhang J, Zhang XY, Yang Y. Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye[J]. PLoS One, 2014, 9(11):e113282
    [32] Helle SS, Duff SJ, Cooper DG. Effect of surfactants on cellulose hydrolysis[J]. Biotechnology and Bioengineering, 1993, 42(5):611-617
    [33] Sarula, Gao JL, Yu XF, Hu SP. Screening of low temperature maize stalk decomposition microorganism[J]. Scientia Agricultura Sinica, 2013, 46(19):4082-4090(in Chinese)萨如拉, 高聚林, 于晓芳, 胡树平. 玉米秸秆低温降解复合菌系的筛选[J]. 中国农业科学, 2013, 46(19):4082-4090
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩月颖,张喜庆,曲云鹏,高云航. 一株低温木质素降解菌的筛选、产酶优化及酶学性质[J]. 微生物学通报, 2021, 48(10): 3700-3713

复制
分享
文章指标
  • 点击次数:568
  • 下载次数: 1281
  • HTML阅读次数: 1527
  • 引用次数: 0
历史
  • 收稿日期:2021-01-19
  • 录用日期:2021-03-05
  • 在线发布日期: 2021-10-12
文章二维码