科微学术

微生物学通报

西瓜食酸菌与黄瓜互作转录组分析
作者:
基金项目:

国家自然科学基金(31260419)


Transcriptome analysis of the interaction between Acidovorax citrulli and cucumber
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 细菌性果斑病是一种严重的种传细菌病害,其病原菌为西瓜食酸菌。截至目前对该病病原菌与寄主的互作机制认识极为有限。葫芦科的模式植物黄瓜易被西瓜食酸菌侵染发病,对西瓜食酸菌-黄瓜互作体系进行转录组分析,可以为探究西瓜食酸菌与寄主互作机制奠定重要基础。[目的] 解析西瓜食酸菌-黄瓜互作时的相互响应规律。[方法] 以细菌悬液注射接种6 d黄瓜子叶,处理48 h的子叶作为转录组测序样本。利用RNA-seq技术分析西瓜食酸菌FC440菌株与黄瓜9930品种互作时基因的表达特征。[结果] 测序数据质量分析发现,各样品不同重复间相关性较强,与参考基因组比对率达95%以上,聚类分析发现对照组与处理组表达模式相反,样品处理达到一定效果,表明数据整体质量较高。选取6个差异表达基因进行RT-qPCR验证,结果显示6个基因的表达模式与转录组结果基本一致,表明转录组测序结果比较可靠。西瓜食酸菌和黄瓜互作48 h后,在转录组水平分别检测到1 618个和8 698个差异表达基因。Gene Ontology (GO)功能注释显示,细菌的差异基因显著富集在细胞组分中的细胞膜(37.5%)和膜部分(27.0%),生物过程中的氧化还原过程(66.7%)以及分子功能中的水解酶活性(66.5%);黄瓜的差异基因显著富集在细胞组分中的质体(22.2%)和叶绿体(21.3%),分子功能中的催化活性(70.0%)以及生物过程中的碳水化合物衍生物代谢(32.2%)。Kyoto Encyclopedia of Genes and Genomes (KEGG)分析显示,细菌中致病相关基因显著富集在群体感应及细菌趋化性途径,而且群体感应系统基因下调更显著。黄瓜中调控钙依赖蛋白激酶(Calcium-Dependent Protein Kinase,CDPK)、钙调素和类钙调素(Calmodulin and Calmodulin-Like,CaMCML)及呼吸氧暴发激酶(Respiratory Burst Oxidase Homologne,Rboh)的基因总体上调,调控苯丙氨酸裂解酶(phenylalanine ammonia-lyase,PAL)的基因和谷胱甘肽S-转移酶(Glutathione S-transferase,GST)的基因在相应代谢途径中数量最多且上调程度明显。[结论] 获得较高质量的西瓜食酸菌与黄瓜互作的转录组测序结果。群体感应与西瓜食酸菌FC440菌株致病力密切相关;寄主黄瓜应对西瓜食酸菌侵染以Ca2+信号激活的防御反应为主。PAL和GST在黄瓜抵抗西瓜食酸菌侵染中发挥重要作用。本研究为进一步深入解析西瓜食酸菌与寄主互作的机制奠定了基础。

    Abstract:

    [Background] Bacterial fruit blotch of cucurbits is a serious seed-borne bacterial disease, and its pathogen is Acidovorax citrulli. So far, the understanding of the interaction mechanism between pathogen and its hosts is extremely limited. Cucumber, a model plant in the Cucurbitaceae family, is one of the hosts and easy to be infected. The transcriptome analysis of the interaction of Ac-cucumber can lay an important foundation for exploring the interaction mechanism of Ac and its host.[Objective] To analyze the responses of both Ac and cucumber under the interaction. [Methods] 6 d cotyledons of cucumber were inoculated with bacteria cell suspension, and 48 h cotyledons post inoculation were sampled for transcriptome sequencing. The RNASeq technology was used to analyze the gene expression features of Ac FC440 strain interacting with 9930 cwltivar of cucumber. [Results] The sequencing data shows that the correlation between different replicates of each sample was strong, and the comparison rate with the reference genome was over 95%. Cluster analysis indicates that the expression patterns of the control were opposite to that of the treatment, and the sample processing achieved a certain effect, indicating that the overall quality of the data was high. Six differentially expressed genes were selected for RT-qPCR verification, and the results showed that the expression level of the six genes were basically consistent with the transcriptome results, indicating that the transcriptome sequencing results were relatively reliable. Under 48 h interaction between Ac and cucumber, there were 1 618 genes and 8 698 genes expressed differentially, respectively. Gene ontology (GO) analysis shows that differential genes of bacteria are significantly enriched in the cell membrane (37.5%) and membrane part (27.0%) in cellular components, oxidation-reduction process (66.7%) in biological process and hydrolase activity (66.5%) in molecular function. Differential genes of cucumber are significantly enriched in plastid (22.2%) and chloroplast (21.3%) in cellular components, catalytic activity (70.0%) in molecular functions and carbohydrate derivative metabolic process (32.2%) in biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that pathogenic related genes in bacteria were significantly enriched in the quorum sensing and bacterial chemotaxis pathways, and the genes of quorum sensing were down-regulated more than others. Genes regulating expression of calcium-dependent protein kinase (CDPK), calmodulin and calmodulin-like (CaMCML) and respiratory burst oxidase homologne (Rboh) in cucumber were up-regulated, and genes regulating expression of phenylalanine ammonia-lyase (PAL) and glutathione S-transferase (GST) are the most abundant ones and up-regulated in the corresponding metabolic pathways. [Conclusion] The quality of transcriptome sequencing data of Ac and cucumber interaction was high. Quorum sensing correlated to the pathogenicity of FC440 strain in Ac. The main path that cucumber's defense reaction against to Ac infection is activated by Ca2+ signal. PAL and GST play an important role in resistance of cucumber to Ac. This study lays the foundation for further exploration on the interaction mechanism between Ac and its host.

    参考文献
    [1] Zhao TC, Sun FZ, Wang BW. Review on the research of Acidovorax avenae subsp. citrulli[J]. Plant Protection Technology and Extension, 2001, 21(3):37-38,36(in Chinese)赵廷昌, 孙福在, 王兵万. 西瓜细菌性果斑病研究进展[J]. 植保技术与推广, 2001, 21(3):37-38,36
    [2] Wang TL, Yan WR, Yan SS, Yang YW, Zhao TC. Analysis of the coding regions for signal peptide-containing proteins in Acidovorax citrulli genome[J]. China Cucurbits and Vegetables, 2012, 25(1):1-6(in Chinese)王铁霖, 严婉荣, 闫莎莎, 杨玉文, 赵廷昌. 瓜类果斑病菌(Acidovorax citrulli)基因组信号肽预测分析[J]. 中国瓜菜, 2012, 25(1):1-6
    [3] Chen XK. Detection the pathogen of bacterial fruit blotch of watermelon by polymerase chain reaction[D]. Fuzhou:Master's Thesis of Fujian Agriculture and Forestry University, 2010(in Chinese)陈新垲. 西瓜细菌性果斑病菌的PCR检测[D]. 福州:福建农林大学硕士学位论文, 2010
    [4] Zhao TC, Sun FZ, Wang BW, Hui WG. Pathogen identification of Hami melon bacterial fruit blotch[J]. Acta Phytopathologica Sinica, 2001, 31(4):357-364(in Chinese)赵廷昌, 孙福在, 王兵万, 回文广. 哈密瓜细菌性果斑病病原菌鉴定[J]. 植物病理学报, 2001, 31(4):357-364
    [5] Jin Y, Zhang JJ, Wu YH, Gao J. Occurrence of watermelon bacterial fruit blotch and identification of its pathogens[J]. Journal of Jilin Agricultural University, 2004, 26(3):263-266(in Chinese)金岩, 张俊杰, 吴燕华, 高洁. 西瓜细菌性果斑病的发生与病原菌鉴定[J]. 吉林农业大学学报, 2004, 26(3):263-266
    [6] Zhang YY, Ji WQ, Yang YW, Guan W, Zhao TC. The technology of transcriptome and its application in cucurbit and vegetable crops[J]. China Cucurbits and Vegetables, 2016, 29(12):1-5,13(in Chinese)张艳艳, 季苇芹, 杨玉文, 关巍, 赵廷昌. 转录组学技术及其在瓜菜作物上的应用[J]. 中国瓜菜, 2016, 29(12):1-5,13
    [7] Wu FG, Liu HF, Nie JJ, Wei YF, Ma QL. Transcriptome analysis of young spikes in rice under salt stress[J]. Chinese Journal of Tropical Crops, 2021, 42(5):1274-1281(in chinese)吴孚桂, 刘慧芳, 聂佳俊, 韦云飞, 马启林. 水稻幼穗响应盐胁迫的转录组分析[J]. 热带作物学报, 2021, 42(5):1274-1281
    [8] Du DD. Differential expression profiling of two different pathotypes of Puccinia triticinia with different virulence and screening of secreted proteins[D]. Baoding:Master's Thesis of Hebei Agricultural University, 2015(in Chinese)杜冬冬. 两个不同致病类型小麦叶锈菌株差异表达分析及其分泌蛋白的筛选[D]. 保定:河北农业大学硕士学位论文, 2015
    [9] Cantu D, Segovia V, MacLean D, Bayles R, Chen XM, Kamoun S, Dubcovsky J, Saunders DG, Uauy C. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors[J]. BMC Genomics, 2013, 14(1):270
    [10] Li XL. Research on the screening, cloning and function of rice blast fungus effector proteins[D]. Changsha:Master's Thesis of Central South University, 2011(in Chinese)李湘龙. 稻瘟菌效应因子的筛选、克隆及其功能研究[D]. 长沙:中南大学硕士学位论文, 2011
    [11] Zhang XX. Functional study of effector Ace1& analysis of pathogenicity differences under light and dark conditions in Acidovorax citrulli[D]. Beijing:Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2018(in Chinese)张晓晓. 西瓜噬酸菌效应蛋白Ace1功能研究及光照黑暗条件下致病性差异分析[D]. 北京:中国农业科学院博士学位论文, 2018
    [12] Liu J. Creation of Tn5 insertional mutants of bacterial fruit blotch pathogen Acidovorax citrulli and identification of pathogenicity altered mutants[D]. Yangling:Doctoral Dissertation of Northwest A&F University, 2012(in Chinese)刘君. 西瓜食酸菌(Acidovorax citrulli)Tn5转座子插入突变体的制备和致病性缺失突变体的鉴定与分析[D]. 杨凌:西北农林科技大学博士学位论文, 2012
    [13] Burdman S, Kots N, Kritzman G, Kopelowitz J. Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel[J]. Plant Disease, 2005, 89(12):1339-1347
    [14] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4):357-359
    [15] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5):511-515
    [16] Anders S, Huber W. Differential expression of RNA-Seq data at the gene level-the DESeq package[J]. European Molecular Biology Laboratory, 2013
    [17] Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq:accounting for selection bias[J]. Genome Biology, 2010, 11(2):R14
    [18] Zhou Z. Study on the gene expression regulation of fengycin synthetases in Bacillus amyloliquefaciens[D]. Huaian:Master's Thesis of Huaiyin Institute of Technology, 2020(in Chinese)周振. 解淀粉芽孢杆菌Fengycin合成酶基因表达调控的研究[D]. 淮安:淮阴工学院硕士学位论文, 2020
    [19] Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure[J]. Bioinformatics, 2006, 22(13):1600-1607
    [20] Liang QQ. Functional analysis of four key genes in the TCHK signaling pathway in Pyrenophora graminea[D]. Lanzhou:Doctoral Dissertation of Gansu Agricultural University, 2020(in Chinese)梁倩倩. 大麦条纹病菌TCHK信号途径4个关键基因功能研究[D]. 兰州:甘肃农业大学博士学位论文, 2020
    [21] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research, 2008, 36(suppl_1):D480-D484
    [22] Zhang YY, Zhao M, Yang YW, Guan W, Ji WQ, Bai QR, Gao J, Walcott RR, Zhao TC. Transcriptomic analysis of early interaction between melon seedlings and Acidovorax citrulli strains[J]. Acta Phytopathologica Sinica, 2017, 47(6):776-789(in Chinese)张艳艳, 赵梅, 杨玉文, 关巍, 季苇芹, 白庆荣, 高洁, Ron R.Walcott, 赵廷昌. 西瓜噬酸菌不同菌株与甜瓜幼苗早期互作的转录组学分析[J]. 植物病理学报, 2017, 47(6):776-789
    [23] Yang L. Transcriptome analysis of interaction between sunflower and Puccinia helianthi and screening of resistance genes[D]. Hohhot:Master's Thesis of Inner Mongolia Agricultural University, 2018(in Chinese)杨丽. 向日葵-锈菌互作的转录组分析及抗病基因的挖掘[D]. 呼和浩特:内蒙古农业大学硕士学位论文, 2018
    [24] Shan CH, Chen W, Tang FX, Jiang FY. Construction and analysis of the transcriptome before and after infected by Penicillium in Hami melon fruit[J]. Journal of Food Science and Biotechnology, 2016, 35(8):806-814(in Chinese)单春会, 陈卫, 唐凤仙, 姜富耀. 青霉菌侵染前后哈密瓜转录组的构建及分析[J]. 食品与生物技术学报, 2016, 35(8):806-814
    [25] Camejo D, Guzmán-Cedeño Á, Moreno A. Reactive oxygen species, essential molecules, during plant-pathogen interactions[J]. Plant Physiology and Biochemistry, 2016, 103:10-23
    [26] Shan CH. Transcriptomics and proteomics of Hami melon responding to Penicillium infection and change analysis of resistance-related enzymes[D]. Wuxi:Doctoral Dissertation of Jiangnan University, 2015(in Chinese)单春会. 哈密瓜响应青霉菌侵染的转录组和蛋白组研究及相关抗性酶变化分析[D]. 无锡:江南大学博士学位论文, 2015
    [27] Zhang YY. Transcriptomic analysis of the watermelon and melon infected with different strains of Acidovorax citrulli[D]. Changchun:Master's Thesis of Jilin Agricultural University, 2017(in Chinese)张艳艳. 西瓜和甜瓜响应西瓜噬酸菌不同亚群菌株侵染的转录组分析[D]. 长春:吉林农业大学硕士学位论文, 2017
    [28] Roig C, Fita A, Ríos G, Hammond JP, Nuez F, Picó B. Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection[J]. BMC Genomics, 2012, 13(1):601
    [29] O'Brien RG, Martin HL. Bacterial blotch of melons caused by strains of Acidovorax avenae subsp. citrulli[J]. Australian Journal of Experimental Agriculture, 1999, 39(4):479
    [30] Walcott RR, Fessehaie A, Castro AC. Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts[J]. Journal of Phytopathology, 2004, 152(5):277-285
    [31] Wang N. Study of transcriptome and digital gene expression profiles in foxtail millet and its gene expression analysis during interaction with Uromyces setariae-italicae[D]. Shijiazhuang:Master's Thesis of Hebei Normal University, 2015(in Chinese)王楠. 谷子与锈菌互作的转录组和表达谱研究及相关基因表达分析[D]. 石家庄:河北师范大学硕士学位论文, 2015
    [32] Zhang HL. Transcription analysis of summer squash in response to cold stress and the development of SSR molecular marker[D]. Taigu:Master's Thesis of Shanxi Agricultural University, 2015(in Chinese)张宏亮. 低温胁迫下西葫芦转录组分析与SSR分子标记开发[D]. 太谷:山西农业大学硕士学位论文, 2015
    [33] Wang L, Wang YC, Cao HL, Hao XY, Zeng JM, Yang YJ, Wang XC. Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae[J]. PLoS One, 2016, 11(2):e0148535
    [34] Ali MB, McNear DH. Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products[J]. BMC Plant Biology, 2014, 14:84
    [35] Guo Z, Nakagawara S, Sumitani K, Ohta Y. Effect of intracellular glutathione level on the production of 6-methoxymellein in cultured carrot (Daucus carota) cells[J]. Plant Physiology, 1993, 102(1):45-51
    [36] Kong WW, Chen N, Liu TT, Zhu J, Wang JQ, He XQ, Jin Y. Large-scale transcriptome analysis of cucumber and Botrytis cinerea during infection[J]. PLoS One, 2015, 10(11):e0142221
    [37] De Gara L, De Pinto MC, Tommasi F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction[J]. Plant Physiology and Biochemistry, 2003, 41(10):863-870
    [38] Ren ZG, Hou L, Song ZG, Zhang LQ. Screening of the pathogenicity mutants of Acidovorax avenae subsp. citrulli and cloning of the hrcR gene[J]. Acta Phytopathologica Sinica, 2009, 39(5):53-58(in Chinese)任争光, 侯磊, 宋治国, 张力群. 甜瓜细菌性果斑病菌致病性突变体筛选与hrcR基因的克隆[J]. 植物病理学报, 2009, 39(5):53-58
    [39] Johnson KL, Minsavage GV, Le T, Jones JB, Walcott RR. Efficacy of a nonpathogenic Acidovorax citrulli strain as a biocontrol seed treatment for bacterial fruit blotch of cucurbits[J]. Plant Disease, 2011, 95(6):697-704
    [40] Xu RQ. Identification of novel effectors depended on type Ⅲ secretion system in Xanthomonas campestris pv. campestris[D]. Nanning:Doctoral Dissertation of Guangxi University, 2006(in Chinese)徐荣旗. 野油菜黄单胞菌野油菜致病变种新的依赖于Ⅲ型分泌系统的效应物的鉴定[D]. 南宁:广西大学博士学位论文, 2006
    [41] Shavit R, Lebendiker M, Pasternak Z, Burdman S, Helman Y. The vapB-vapC operon of Acidovorax citrulli functions as a bona-fide toxin-antitoxin module[J]. Frontiers in Microbiology, 2016, 6:1499-1511
    [42] Yang SS, Sun BX, Wang TL, Zhang XX, Yang YW, Zhao TC. Preliminary study on the chemotaxis of Acidovorax citrulli[J]. Plant Protection, 2016, 42(3):161-164,189(in Chinese)杨姗姗, 孙柏欣, 王铁霖, 张晓晓, 杨玉文, 赵廷昌. 西瓜嗜酸菌趋化性的初步研究[J]. 植物保护, 2016, 42(3):161-164,189
    [43] Johnson KL, Walcott RR. Quorum sensing contributes to seed-to-seedling transmission of Acidovorax citrulli on watermelon[J]. Journal of Phytopathology, 2013, 161(7/8):562-573
    [44] Yang SS. Chemotaxis detection and functional analysis of cheA and cheY gene in chemotaxis system of Acidovorax citrulli[D]. Beijing:Master's Thesis of Chinese Academy of Agricultural Sciences, 2015(in Chinese)杨姗姗. 西瓜嗜酸菌趋化性测定及趋化基因cheAcheY功能研究[D]. 北京:中国农业科学院硕士学位论文, 2015
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

优丽图孜·乃比,王希东,刘君,陈宝强,宋金迪. 西瓜食酸菌与黄瓜互作转录组分析[J]. 微生物学通报, 2021, 48(10): 3667-3681

复制
分享
文章指标
  • 点击次数:499
  • 下载次数: 1056
  • HTML阅读次数: 784
  • 引用次数: 0
历史
  • 收稿日期:2021-01-10
  • 录用日期:2021-04-13
  • 在线发布日期: 2021-10-12
文章二维码