科微学术

微生物学通报

乙酸钠调控小球藻生长及代谢产物
作者:
基金项目:

江苏省“六大人才高峰”高层次人才选拔培养项目(SWYY-025);江苏省镇江市重点研发计划项目(SH2019004)


Growth and metabolites of Chlorella sorokiniana regulated by sodium acetate
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 小球藻是一种单细胞绿藻,在不同培养条件下可积累高附加值的代谢产物,这些产物可用于生产生物燃料、食品、保健品、药品等。然而这些代谢产物在藻细胞中的生产率较低且很难通过经济可行的方法将其分离,这使其工业化规模生产受到限制。[目的] 研究乙酸钠对小球藻生物量的影响,并分析其对小球藻代谢产物的调控作用。[方法] 通过在小球藻培养液中添加不同浓度的乙酸钠(1.0、2.0、3.0、4.0、5.0 g/L),研究其调控小球藻生长和代谢的作用机理。[结果] 在添加3.0 g/L乙酸钠的培养液中,小球藻的生物量是对照组的5.2倍,尽管藻细胞中蛋白质含量无明显变化,但油脂和类胡萝卜素含量是对照组的2.4倍和1.2倍,多糖和叶绿素a含量却仅为对照组的54.6%和54.4%。[结论] 乙酸钠不仅会影响藻细胞的生长,还会调控其代谢过程,这为深入探索乙酸钠在调控小球藻生长及代谢过程的作用机制提供了理论基础和技术资料。

    Abstract:

    [Background] As one of the unicellular green algae, Chlorella sp. can accumulate a variety of value-added metabolites under different culture conditions. These metabolites could be used as a good feedstock to produce cosmetics, foods, health products, medicines, etc. However, their large-scale industrial production is restricted because of low productivity of metabolites in the algal cells and the difficulty of separating them by economically viable methods. [Objectives] To study the effects of sodium acetate on biomass production of Chlorella sorokiniana, and to analyze its regulatory role in the production of algal metabolites. [Methods] Different concentrations of sodium acetate (1.0, 2.0, 3.0, 4.0 and 5.0 g/L) were added to the cultures of C. sorokiniana. Growth and metabolites of this alga were determined during algae cultivation to study the regulatory role of sodium acetate. [Results] Biomass concentration of C. sorokiniana was 5.2 times higher than that in the controls, when this alga grew in the cultures with 3.0 g/L sodium acetate. Although no obvious changes in contents of proteins were observed, contents of lipids and carotenoids were 2.4 and 1.2 times greater than that in the controls, respectively, when the alga grew in the cultures with 3.0 g/L sodium acetate. In addition, contents of polysaccharides and chlorophyll a decreased, which were only 54.6% and 54.4% of that in the controls, respectively. [Conclusion] Sodium acetate not only affected the growth of C. sorokiniana, but also regulated its metabolic process. These results would provide theoretical basis and technical data for further exploring the regulatory role of sodium acetate in growth and metabolic process of C. sorokiniana.

    参考文献
    [1] Yang SQ, Wei XH, Wang LJ, Yang SH, Luo GH. Growth, photosynthesis and total lipid of Scenedesmus obliquus under different nitrogen and carbon source combinations[J]. China Oils and Fats, 2020, 45(12):112-117(in Chinese)杨宋琪, 魏喜红, 王丽娟, 杨生辉, 罗光宏. 不同氮/碳源组合条件下斜生栅藻的生长、光合及油脂产率[J]. 中国油脂, 2020, 45(12):112-117
    [2] Nair A, Chakraborty S. Synergistic effects between autotrophy and heterotrophy in optimization of mixotrophic cultivation of Chlorella sorokiniana in bubble-column photobioreactors[J]. Algal Research, 2020, 46:101799
    [3] Oliveira CYB, D'Alessandro EB, Antoniosi Filho NR, Lopes RG, Derner RB. Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor[J]. Science of the Total Environment, 2021, 759:143476
    [4] Mitra D, Van Leeuwen J, Lamsal B. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products[J]. Algal Research, 2012, 1(1):40-48
    [5] Kim S, Park JE, Cho YB, Hwang SJ. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions[J]. Bioresource Technology, 2013, 144:8-13
    [6] Xu F, Hu HH, Cong W, Cai ZL, Ouyang F. Effect of organic carbon sources on growth and photosynthesis of Nannochloropsis sp.[J]. The Chinese Journal of Process Engineering, 2003(6):560-563(in Chinese)徐芳, 胡晗华, 丛威, 蔡昭铃, 欧阳藩. 有机碳源对产EPA微藻(Nannochloropsis sp.)生长及光合作用的影响[J]. 过程工程学报, 2003(6):560-563
    [7] Kose Engin I, Cekmecelioglu D, Yücel AM, Oktem HA. Enhancement of heterotrophic biomass production by Micractinium sp. ME05[J]. Waste and Biomass Valorization, 2018, 9(5):811-820
    [8] Gong GP, Zhang X, Tan TW. Simultaneously enhanced intracellular lipogenesis and β-carotene biosynthesis of Rhodotorula glutinis by light exposure with sodium acetate as the substrate[J]. Bioresource Technology, 2020, 295:122274
    [9] Ogawa T, Aiba SC. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus[J]. Biotechnology and Bioengineering, 1981, 23(5):1121-1132
    [10] Martínez F, Orús MI. Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 101[J]. Plant Physiology, 1991, 95(4):1150-1155
    [11] Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K. Best practices in heterotrophic high-cell-density microalgal processes:achievements, potential and possible limitations[J]. Applied Microbiology and Biotechnology, 2011, 91(1):31-46
    [12] Pang N, Gu XY, Fu X, Chen SL. Effects of gluconate on biomass improvement and light stress tolerance of Haematococcus pluvialis in mixotrophic culture[J]. Algal Research, 2019, 43:101647
    [13] Cai JJ, Fei XW, Li YJ, Hu XW, Guo JC, Deng XD. Nutrien elements deficiency and carbon source addition affect on the growth and lipid accumulation in Chlorella sp. KMMCC FC-21[J]. Chinese Journal of Tropical Crops, 2011, 32(11):2029-2036(in Chinese)蔡佳佳, 费小雯, 李亚军, 胡新文, 郭建春, 邓晓东. 元素缺乏和外加碳源对小球藻(Chlorella sp. KMMCC FC-21)生长和油脂积累的影响[J]. 热带作物学报, 2011, 32(11):2029-2036
    [14] Fu R, Huang CG, Wang HY. Effects of nutritions on growth and oil accumulation of Phaeodactylum tricornutum[J]. Hubei Agricultural Sciences, 2011, 50(11):2292-2294,2304(in Chinese)符茹, 黄长干, 王海英. 营养条件对三角褐指藻生长和油脂积累的影响[J]. 湖北农业科学, 2011, 50(11):2292-2294,2304
    [15] Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriological Reviews, 1971, 35(2):171-205
    [16] Deng XY, Gao K, Sun JL. Physiological and biochemical responses of Synechococcus sp. PCC7942 to Irgarol 1051 and diuron[J]. Aquatic Toxicology, 2012, 122/123:113-119
    [17] Hu XL. The process of five biochemical substances for regulating growth and metabolism of Chlorella vulgaris[D]. Zhenjiang:Master's Thesis of Jiangsu University of Science and Technology, 2018(in Chinese)胡小丽. 五种生化物质调控小球藻生长及其代谢的研究[D]. 镇江:江苏科技大学硕士学位论文, 2018
    [18] Hu XL, Li D, Cheng J, Lv K, Gao K, Deng XY. A preliminary study on the growth and metabolism of Chlorella sorokiniana regulated by indomethacin[J]. Genomics and Applied Biology, 2018, 37(1):418-424(in Chinese)胡小丽, 李达, 成婕, 吕凯, 高坤, 邓祥元. 吲哚美辛调控小球藻生长及代谢的初步研究[J]. 基因组学与应用生物学, 2018, 37(1):418-424
    [19] Liang CL, Zheng XY, Zheng ZF, Xu BQ. Influence of organic carbon sources on the growth, protein and chlorophyll content of heterotrophic C MC, Zhao YG, Jin CJ, Wang GC. Elucidating temperature on mixotrophic cultivation of 桡锠刼i>遃譨艬or遥祬公a 譶孵汬ga杲杩硳渼嬯彩儾尠瑳蕴畲镡ど虮瘺赤呩卦繦絥呲酥癮彴吠carbo幮丠即嵯urce application and enzyme activity revelation[J]. Bioresource Technology, 2020, 314:123721
    [38] Wang L, Li YG, Sommerfeld M, Hu Q. A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid[J]. Bioresource Technology, 2013, 129:289-295
    [39] Mondal M, Ghosh A, Tiwari ON, Gayen K, Das P, Mandal MK, Halder G. Influence of carbon sources and light intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional modes[J]. Energy Conversion and Management, 2017, 145:247-254
    [40] Lou SL, Lin X, Liu CL, Anwar M, Li H, Hu ZL. Molecular cloning and functional characterization of CvLCYE, a key enzyme in lutein synthesis pathway in Chlorella vulgaris
    [24] Liu XJ, Duan SS, Li AF, Xu N, Cai ZP, Hu ZX. Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum[J]. Journal of Applied Phycology, 2009, 21(2):239-246
    [25] Giovanardi M, Baldisserotto C, Ferroni L, Longoni P, Cella R, Pancaldi S. Growth and lipid synthesis promotion in mixotrophic Neochloris oleoabundans (Chlorophyta) cultivated with glucose[J]. Protoplasma, 2014, 251(1):115-125
    [26] Ip PF, Wong KH, Chen F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture[J]. Process Biochemistry, 2004, 39(11):1761-1766
    [27] Huang PL, Li L, Li JJ, Li XY. Effects of S-metolachlor on photosynthetic characteristics of Microcystis flos-aquae[J]. Research of Environmental Sciences, 2020, 33(8):1885-1893(in Chinese)黄沛玲, 李玲, 李俊杰, 李雪妍. 水华微囊藻对除草剂S-异丙甲草胺胁迫的光合活性响应[J]. 环境科学研究, 2020, 33(8):1885-1893
    [28] Bandara S, Ren Z, Lu L, Zeng XL, Shin H, Zhao KH, Yang XJ. Photoactivation mechanism of a carotenoid-based photoreceptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24):6286-6291
    [29] Pérez-Pérez ME, Couso I, Crespo JL. Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii[J]. Autophagy, 2012, 8(3):376-388
    [30] Ali HEA, El-Fayoumy EA, Rasmy WE, Soliman RM, Abdullah MA. Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants[J]. Journal of Applied Phycology, 2021, 33(1):227-239
    [31] Piotrowska-Niczyporuk A, Bajguz A, Talarek M, Bralska M, Zambrzycka E. The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae)[J]. Environmental Science and Pollution Research, 2015, 22(23):19112-19123
    [32] Orosa M, Franqueira D, Cid A, Abalde J. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth[J]. Biotechnology Letters, 2001, 23(5):373-378
    [33] Zhang X. Lipid metabolism research and transcriptome analysis of Chlorella sp. nitrogen starvation[D]. Hangzhou:Master's Thesis of Zhejiang University, 2018(in Chinese)张雪. 氮饥饿条件下小球藻(Chlorella sp.)油脂代谢研究及转录组分析[D]. 杭州:浙江大学硕士学位论文, 2018
    [34] Popovich CA, Damiani C, Constenla D, Leonardi PI. Lipid quality of the diatoms Skeletonema costatum and Navicula gregaria from the South Atlantic Coast (Argentina):evaluation of its suitability as biodiesel feedstock[J]. Journal of Applied Phycology, 2012, 24(1):1-10
    [35] Thompson GA. Lipids and membrane function in green algae[J]. Biochimica et Biophysica Acta, 1996, 1302(1):17-45
    [36] Xue LL. The effects of nutrients, auxins and chemical triggers on the growth and lipid accumulation of Dunaliella tertiolecta[D]. Guangzhou:Master's Thesis of South China University of Technology, 2017(in Chinese)薛璐璐. 营养元素、生长素及化学诱导剂对特氏杜氏藻生长及油脂含量的影响[D]. 广州:华南理工大学硕士学位论文, 2017
    [37] Zhang ZS, Gao PT, Guo L, Wang Y, She ZL, Gao
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘巧巧,胡小丽,杨钰娟,董京伟,高正,钱平康,邓祥元. 乙酸钠调控小球藻生长及代谢产物[J]. 微生物学通报, 2021, 48(10): 3580-3587

复制
分享
文章指标
  • 点击次数:742
  • 下载次数: 1245
  • HTML阅读次数: 1822
  • 引用次数: 0
历史
  • 收稿日期:2020-12-14
  • 录用日期:2021-07-13
  • 在线发布日期: 2021-10-12
文章二维码