科微学术

微生物学通报

熊蜂生假丝酵母启动子的筛选及强度分析
作者:
基金项目:

江苏省自然科学基金(BK20171138)


Screening and intensity analysis of promoters in Starmerella bombicola
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 熊蜂生假丝酵母(Starmerella bombicola)作为一种非常规假丝酵母菌株,因其具备高产槐糖脂生物表面活性剂的能力而受到广泛关注。然而,由于自身的表达系统并不完善,限制了该菌株的代谢工程改造。[目的] 克隆、筛选及鉴定新的系列内源启动子表达元件。[方法] 通过对比分析熊蜂生假丝酵母全基因组及9种功能已知目的基因信息,并结合启动子预测网站,筛选获得系列启动子候选序列,以SbGFP(密码子优化后的酵母增强型绿色荧光蛋白)为报告基因进行整合表达,通过绿色荧光蛋白强度及转录水平分析鉴定启动子强度。[结果] 在分别以葡萄糖和油酸作为唯一碳源的条件下,启动子PTEF1和PGPD在不同碳源培养条件下均显示出较高的转录水平。启动子PCYP52M1、PUGTA1、PUGTB1及PMOB在以油酸为唯一碳源时具有弱转录活性,而在以葡萄糖为唯一碳源时则未检测到它们具有转录活性,推测它们是油酸诱导型启动子。进一步利用实时荧光定量PCR (RT-qPCR)对SbGFP进行转录水平分析,检测结果与绿色荧光表达水平一致。[结论] 获得了系列熊蜂生假丝酵母内源性启动子,进一步丰富了该菌株的表达元件,为菌株的代谢工程改造及基因的表达与调控奠定了理论基础。

    Abstract:

    [Background] Starmerella bombicola, as an unconventional yeast strain, has attracted wide attention owing to its ability to produce sophorolipids biosurfactant. However, its expression system is not well defined, which limits the development of metabolic engineering. [Objective] A panel of endogenous promoters were cloned and characterized from S. bombicola. [Methods] In this study, through the comparative analysis of the whole genome of S. bombicola and 9 target genes, combined with the promoter prediction website, a series of promoter candidate sequences were screened and obtained, and SbGFP (codon-optimized yeast enhanced green fluorescent protein for S. bombicola), as the reporter gene, was integrated and expressed in S. bombicola. The promoter strength was identified by analyzing the intensity of green fluorescent protein and its transcriptional levels. [Results] When glucose and colleseed oil were respectively used as the sole carbon source, the promoters PTEF1 and PGPD showed higher transcription levels under both conditions. The promoters PCYP52M1, PUGTA1, PUGTB1, and PMOB had weak transcriptional activity when colleseed oil was used as the sole carbon source, but no transcriptional activity was detected when cultured with glucose. It was speculated that they were colleseed oil-inducible promoters. Transcriptional level of SbGFP was further analyzed by real-time fluorescence quantitative PCR (RT-qPCR), the result was consistent with the expression level of SbGFP.[Conclusion] A panel of different promoters were screened and characterized, which would further enrich its expression elements and lay a theoretical foundation for the metabolic engineering for S. bombicola.

    参考文献
    [1] Daverey A, Pakshirajan K, Sumalatha S. Sophorolipids production by Candida bombicola using dairy industry wastewater[J]. Clean Technologies and Environmental Policy, 2011, 13(3):481-488
    [2] Pekin G, Vardar-Sukan F, Kosaric N. Production of sophorolipids from Candida bombicola ATCC 22214 using Turkish corn oil and honey[J]. Engineering in Life Sciences, 2005, 5(4):357-362
    [3] Develter DWG, Lauryssen LML. Properties and industrial applications of sophorolipids[J]. European Journal of Lipid Science and Technology, 2010, 112(6):628-638
    [4] Ciesielska K, Roelants SLKW, Bogaert INA, Waele S, Vandenberghe I, Groeneboer S, Soetaert W, Devreese B. Characterization of a novel enzyme-Starmerella bombicola lactone esterase (SBLE)-responsible for sophorolipid lactonization[J]. Applied Microbiology and Biotechnology, 2016, 100(22):9529-9541
    [5] Saerens KMJ, Roelants SLKW, Van Bogaert INA, Soetaert W. Identification of the UDP-glucosyltransferase gene UGTA1, responsible for the first glucosylation step in the sophorolipid biosynthetic pathway of Candida bombicola ATCC 22214[J]. FEMS Yeast Research, 2011, 11(1):123-132
    [6] Saerens KMJ, Zhang JX, Saey L, Van Bogaert INA, Soetaert W. Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain[J]. Yeast:Chichester, England, 2011, 28(4):279-292
    [7] Xiong XC, Chen SL. Expanding toolbox for genes expression of Yarrowia lipolytica to include novel inducible, repressible, and hybrid promoters[J]. ACS Synthetic Biology, 2020, 9(8):2208-2213
    [8] Yamanishi M, Katahira S, Matsuyama T. TPS1 Terminator increases mRNA and protein yield in a Saccharomyces cerevisiae expression system[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(11):2234-2236
    [9] Shabbir Hussain M, Gambill L, Smith S, Blenner MA. Engineering promoter architecture in oleaginous yeast Yarrowia lipolytica[J]. ACS Synthetic Biology, 2016, 5(3):213-223
    [10] Curran KA, Crook NC, Karim AS, Gupta A, Wagman AM, Alper HS. Design of synthetic yeast promoters via tuning of nucleosome architecture[J]. Nature Communications, 2014, 5:4002
    [11] Blazeck J, Garg R, Reed B, Alper HS. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters[J]. Biotechnology and Bioengineering, 2012, 109(11):2884-2895
    [12] Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U, Stephanopoulos G. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2006, 72(8):5266-5273
    [13] Hubmann G, Thevelein JM, Nevoigt E. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae[J]. Methods in Molecular Biology, 2014, 1152:17-42
    [14] Zhang JR. Metabolic engineering of Starmerella bombicola for producing acid-type sophorolipid[D]. Wuxi:Master's Thesis of Jiangnan University, 2019(in Chinese)张疆睿. 代谢工程改造熊蜂生假丝酵母生产酸型槐糖脂[D]. 无锡:江南大学硕士学位论文, 2019
    [15] Van Bogaert INA, De Maeseneire SL, Develter D, Soetaert W, Vandamme EJ. Development of a transformation and selection system for the glycolipid-producing yeast Candida bombicola[J]. Yeast:Chichester, England, 2008, 25(4):273-278
    [16] Lodens S, Roelants SLKW, Luyten G, Geys R, Coussement P, De Maeseneire SL, Soetaert W. Unraveling the regulation of sophorolipid biosynthesis in Starmerella bombicola[J]. FEMS Yeast Research, 2020, 20(3):foaa021
    [17] Liu J, Li JS, Gao N, Zhang XY, Zhao GQ, Song X. Identification and characterization of a protein Bro1 essential for sophorolipids synthesis in Starmerella bombicola[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(4/5):437-448
    [18] Lee JW, Kim TY, Jang YS, Choi S, Lee SY. Systems metabolic engineering for chemicals and materials[J]. Trends in Biotechnology, 2011, 29(8):370-378
    [19] Cormack BP, Bertram G, Egerton M, Gow NAR, Falkow S, Brown AJP. Yeast-enhanced green fluorescent protein (yEGFP):a reporter of gene expression in Candida albicans[J]. Microbiology, 1997, 143(2):303-311
    [20] Saerens KMJ, Saey L, Soetaert W. One-step production of unacetylated sophorolipids by an acetyltransferase negative Candida bombicola[J]. Biotechnology and Bioengineering, 2011, 108(12):2923-2931
    [21] Rosochacki SJ, Matejczyk M. Green fluorescent protein as a molecular marker in microbiology[J]. Acta Microbiologica Polonica, 2002, 51(3):205-216
    [22] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4):402-408
    [23] Quax TEF, Claassens NJ, Söll D, Van Der Oost J. Codon bias as a means to fine-tune gene expression[J]. Molecular Cell, 2015, 59(2):149-161
    [24] Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A, et al. Promoters maintain their relative activity levels under different growth conditions[J]. Molecular Systems Biology, 2013, 9:701
    [25] Sun J, Shao ZY, Zhao H, Nair N, Wen F, Xu JH, Zhao HM. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2012, 109(8):2082-2092
    [26] Williams TC, Espinosa MI, Nielsen LK, Vickers CE. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2015, 14(1):1-10
    [27] Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay[J]. Nucleic Acids Research, 2013, 41(22):10668-10678
    [28] Du J, Yuan YB, Si T, Lian JZ, Zhao HM. Customized optimization of metabolic pathways by combinatorial transcriptional engineering[J]. Nucleic Acids Research, 2012, 40(18):177-209
    [29] Peng BY, Williams TC, Henry M, Nielsen LK, Vickers CE. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift:a comparison of yeast promoter activities[J]. Microbial Cell Factories, 2015, 14(1):91
    [30] Zhang K, Su LQ, Duan XG, Liu LN, Wu J. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system[J]. Microbial Cell Factories, 2017, 16(1):32
    [31] Tang RQ, Xiong L, Bai FW, Zhao XQ. Activity comparison of the artificial hybrid promoter with its native promoter in Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2017, 33(1):120-128(in Chinese)唐瑞琪, 熊亮, 白凤武, 赵心清. 酿酒酵母人工杂合启动子与天然启动子活性比较[J]. 生物技术通报, 2017, 33(1):120-128
    [32] Yu JH, Ma WW, Wang ZW, Chen T, Zhao XM. Progress in synthetic promoter library[J]. Microbiology China, 2016, 43(1):198-204(in Chinese)余君涵, 马雯雯, 王智文, 陈涛, 赵学明. 人工合成启动子文库研究进展[J]. 微生物学通报, 2016, 43(1):198-204
    [33] Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Lee TI, Young RA. Revisiting global gene expression analysis[J]. Cell, 2012, 151(3):476-482
    [34] Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7):621-628
    [35] Anders S, Huber W. Differential expression analysis for sequence count data[J]. Nature Precedings, 2010:1
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石依博,张利华,张敏,夏媛媛,杨海泉,沈微,陈献忠. 熊蜂生假丝酵母启动子的筛选及强度分析[J]. 微生物学通报, 2021, 48(10): 3569-3579

复制
分享
文章指标
  • 点击次数:745
  • 下载次数: 1416
  • HTML阅读次数: 1430
  • 引用次数: 0
历史
  • 收稿日期:2021-01-05
  • 录用日期:2021-01-29
  • 在线发布日期: 2021-10-12
文章二维码