科微学术

微生物学通报

假结核耶尔森氏菌中Phd-Doc毒素-抗毒素系统的功能鉴定
作者:
基金项目:

国家重点研发计划(2018YFA0901200);国家自然科学基金(31725003,31970114,31671292);庆阳陇沣海绵城市建设管理运营公司小崆峒沟道项目综合治理项目(QYLF-JSYY-2020029)


Functional characterization of Phd-Doc toxin-antitoxin system in Yersinia pseudotuberculosis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 毒素-抗毒素系统在微生物体内广泛存在,在微生物对抗外界不良环境方面发挥重要作用。[目的] 以模式细菌假结核耶尔森氏菌(Yersinia pseudotuberculosisYptb)为材料,探究其编码的Phd-Doc毒素-抗毒素系统的作用机制和生物学功能。[方法] 通过生物信息学方法预测Yptb中编码的Phd-Doc毒素-抗毒素系统,通过毒性分析、基因表达分析及蛋白相互作用对其进行鉴定;通过抗生素胁迫、氧胁迫、生物被膜形成等实验研究Phd-Doc在体内发挥的生物学功能。[结果] 生物信息学分析鉴定出一对Phd-Doc毒素-抗毒素系统,发现二者共转录且相互作用;毒素蛋白Doc能够引起大肠杆菌形态发生变化并抑制其生长,抗毒素蛋白Phd能中和Doc的毒性;Phd-Doc毒素-抗毒素系统具有自调控抑制效应;phd-doc的缺失对Yptb自身的生长无影响,而且毒素蛋白Doc在野生型Yptb内过表达并未显示毒性;phd-doc在转录水平上响应了抗生素胁迫和氧胁迫,其中,对氯霉素胁迫最为敏感,但并不影响Yptb的生长;同时,Phd-Doc能够影响Yptb的生物被膜形成能力。[结论] Yptb中Phd-Doc毒素-抗毒素系统的功能鉴定对于更好地了解在多变的外部环境下微生物的定殖和响应机制具有重要意义。

    Abstract:

    [Background] The toxin-antitoxin system is widespread in microorganisms and plays an important role in their defense against adverse environments. [Objective] we used Yersinia pseudotuberculosis (Yptb) as the meterial to investigate the mechanism and biological functions of the Phd-Doc toxin-antitoxin system. [Methods] The Phd-Doc toxin-antitoxin system encoded in Yptb was identified by bioinformatics, and subsequently confirmed by toxicity experiment, gene expression analysis and protein interaction assay. To study the biological function of Phd-Doc toxin-antitoxin system in Yptb, the differences between the wild type strains and mutant strains were compared through antibiotic stressing, oxygen stressing and biofilm formation experiments. [Results] Bioinformatics analysis showed that a pair of Phd-Doc toxin-antitoxin system is present in Yptb, and subsequent experiments confirmed that these proteins are co-transcripted and display high affinity. The cell morphology was changed and cell growth was inhibited when the Doc toxin protein expressed in Escherichia coli, and these changes were rescued by the antitoxin protein Phd. The transcription level of phd-doc was significantly up-regulated under stress conditions, especially under the chloramphenicol stress. Deletion of phd-doc significantly affected the biofilm forming ability of Yptb but did not influence the cell growth. [Conclusion] The functional identification of the Phd-Doc toxin antitoxin system in Yptb is of great significance for a better understanding of the colonization and response mechanism of microorganisms under the changing external environment.

    参考文献
    [1] Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli:involvement of the yefM-yoeB toxin-antitoxin system[J]. Molecular Microbiology, 2004, 51(6):1705-1717
    [2] LeRoux M, Culviner PH, Liu YJ, Littlehale ML, Laub MT. Stress can induce transcription of toxin-antitoxin systems without activating toxin[J]. Molecular Cell, 2020, 79(2):280-292.e8
    [3] Song S, Wood TK. A primary physiological role of toxin/antitoxin systems is phage inhibition[J]. Frontiers in Microbiology, 2020, 11:1895
    [4] Song S, Wood TK. Toxin/antitoxin system paradigms:toxins bound to antitoxins are not likely activated by preferential antitoxin degradation[J]. Advanced Biosystems, 2020, 4(3):e1900290
    [5] Lehnherr H, Yarmolinsky MB. Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(8):3274-3277
    [6] Castro-Roa D, Garcia-Pino A, De Gieter S, Van Nuland NAJ, Loris R, Zenkin N. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu[J]. Nature Chemical Biology, 2013, 9(12):811-817
    [7] Kinch LN, Yarbrough ML, Orth K, Grishin NV. Fido, a novel AMPylation domain common to Fic, Doc, and avrB[J]. PLoS One, 2009, 4(6):e5818
    [8] Goeders N, Van Melderen L. Toxin-antitoxin systems as multilevel interaction systems[J]. Toxins, 2014, 6(1):304-324
    [9] Garcia-Pino A, Sterckx Y, Magnuson RD, Loris R. Type II toxin-antitoxin Loci:the phd/doc family[J]//In Gerdes K. (ed). Prokaryotic Toxin-Antitoxins[M]. Newcastle upon Tyne, UK:Springer Berlin Heidelberg, 2013:157-176
    [10] Lu CH, Nakayasu ES, Zhang LQ, Luo ZQ. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation[J]. Science Signaling, 2016, 9(412):ra11
    [11] Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling[J]. Science, 2009, 323(5911):269-272
    [12] Mukherjee S, Liu XY, Arasaki K, McDonough J, Galán JE, Roy CR. Modulation of Rab GTPase function by a protein phosphocholine transferase[J]. Nature, 2011, 477(7362):103-106
    [13] Liu MH, Zhang YL, Inouye M, Woychik NA. Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(15):5885-5890
    [14] Guérout AM, Iqbal N, Mine N, Ducos-Galand M, Van Melderen L, Mazel D. Characterization of the phd-doc and ccd toxin-antitoxin cassettes from Vibrio superintegrons[J]. Journal of Bacteriology, 2013, 195(10):2270-2283
    [15] Goulard C, Langrand S, Carniel E, Chauvaux S. The Yersinia pestis chromosome encodes active addiction toxins[J]. Journal of Bacteriology, 2010, 192(14):3669-3677
    [16] Frampton R, Aggio RB, Villas-Bôas SG, Arcus VL, Cook GM. Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival[J]. Journal of Biological Chemistry, 2012, 287(8):5340-5356
    [17] Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB. Plasmid addiction genes of bacteriophage P1:Doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained[J]. Journal of Molecular Biology, 1993, 233(3):414-428
    [18] Chan WT, Domenech M, Moreno-Córdoba I, Navarro-Martínez V, Nieto C, Moscoso M, García E, Espinosa M. The Streptococcus pneumoniae yefM-yoeB and relBE toxin-antitoxin operons participate in oxidative stress and biofilm formation[J]. Toxins (Basel), 2018, 10(9):378
    [19] Arbing MA, Handelman SK, Kuzin AP, Verdon G, Wang C, Su M, Rothenbacher FP, Abashidze M, Liu MH, Hurley JM, et al. Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems[J]. Structure, 2010, 18(8):996-1010
    [20] Hu YB, Lu P, Wang Y, Ding LS, Atkinson S, Chen SY. OmpR positively regulates urease expression to enhance acid survival of Yersinia pseudotuberculosis[J]. Microbiology(Reading), 2009, 155(Pt 8):2522-2531
    [21] Wang Z, Wang TT, Cui R, Zhang ZX, Chen KQ, Li MY, Hua YY, Gu HW, Xu L, Wang Y, et al. HpaR, the repressor of aromatic compound metabolism, positively regulates the expression of T6SS4 to resist oxidative stress in Yersinia pseudotuberculosis[J]. Frontiers in Microbiology, 2020, 11:705
    [22] Wang TT, Si M, Song YH, Zhu WH, Gao F, Wang Y, Zhang L, Zhang WP, Wei GH, Luo ZQ, et al. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity[J]. PLoS Pathogens, 2015, 11(7):e1005020
    [23] Zhang WP, Xu SJ, Li J, Shen XH, Wang Y, Yuan ZM. Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis[J]. Archives of Microbiology, 2011, 193(5):351-363
    [24] Battesti A, Bouveret E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli[J]. Methods, 2012, 58(4):325-334
    [25] Hofnung M. A short course in bacterial genetics and a laboratory manual and handbook for Escherichia coli and related bacteria[J]. Biochimie, 1993, 75(6):501
    [26] Lin JS, Niu YT, Wang ST, Wang GF, Tian Y, Zhang H, Zhu XF, Si QP, Cheng JL, Ai YN, et al. Characterization of zinc ion uptake mediated by cntRLMN operon in Pseudomonas aeruginosa[J]. Acta Microbiologica Sinica, 2020, 60(4):789-804(in Chin?汳楥温殗?戴攬琠睛敳敷測?璋漅碛椬渠?愵渋琬椠琰濎砬椠渠?洬漠搱痭泞攬猠?慒湡搬?成感挽琬攠牾榚慠氬?灉攮爠珜槿獇瑕旞滌挼敩嬾?嵮???潍畎爼港慩氾?澵晐??漌治敐捄痖沄憟狽??楛潊汝漮朠禮???ゥ???‰???????????劳??????扢牲?孛??嵝??牡慮楤歯楮渠?丬???潡潲牭浡愠杁栬琠楗条桤????噓愬渠??敲污摤敡牲敡湪????听礠灓敩????瑒漬砠楓湲?慮湩瑶楡瑳潡确椠湎?猠祓獡瑮敤浨獹?攠癓漮氠畂瑩楯潩湮?慯湲摭?牴敩癣漠污畮瑤椠潭湵獴孡?嵩???潬甠牳湴慵汤?潥晳??慦挠瑲敥牬楡潴汥潤朠祴???の木ち???ぴ?????数ちど??????Mycobacterium tuberculosis predict and identify key functional residues[J]. The Journal of Biological Chemistry, 2019, 294(23):9048-9063
    [28] Kędzierska B, Hayes F. Emerging roles of toxin-antitoxin modules in bacterial pathogenesis[J]. Molecules, 2016, 21(6):790
    [29] Sun CL, Guo YX, Tang KH, Wen ZL, Li BY, Zeng ZS, Wang XX. MqsR/mqsA toxin/antitoxin system regulates persistence and biofilm formation in Pseudomonas putida KT2440[J]. Frontiers in Microbiology, 2017, 8:840
    [30] Salmon MA, Melderen LV, Bernard P, Couturier M. The antidote and autoregulatory functions of the F plasmid CcdA protein:a genetic and biochemical survey[J]. Molecular and General Genetics, 1994, 244(5):530-538
    [31] Hayes F, Kędzierska B. Regulating toxin-antitoxin expression:controlled detonation of intracellular molecular timebombs[J]. Toxins (Basel), 2014, 6(1):337-358
    [32] Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L. Diversity of bacterial type II toxin-antitoxin systems:a comprehensive search and functional analysis of novel families[J]. Nucleic Acids Research, 2011, 39(13):5513-5525
    [33] Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis[J]. Pathogens and Disease, 2018, 76(4):fty039
    [34] Sala A, Calderon V, Bordes P, Genevaux P. TAC from Mycobacterium tuberculosis:a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones[J]. Cell Stress and Chaperones, 2013, 18(2):129-135
    [35] Muthuramalingam M, White JC, Bourne CR. Toxin-antitoxin modules are pliable switches activated by multiple protease pathways[J]. Toxins (Basel), 2016, 8(7):214
    [36] Ronneau S, Helaine S. Clarifying the
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨昶杏,孟凡能,张文越,杨培钰,王丹丹,刘兴宇,王瑶,沈锡辉. 假结核耶尔森氏菌中Phd-Doc毒素-抗毒素系统的功能鉴定[J]. 微生物学通报, 2021, 48(10): 3554-3568

复制
分享
文章指标
  • 点击次数:518
  • 下载次数: 2529
  • HTML阅读次数: 1173
  • 引用次数: 0
历史
  • 收稿日期:2021-01-02
  • 录用日期:2021-03-23
  • 在线发布日期: 2021-10-12
文章二维码