科微学术

微生物学通报

分别利用产甘油假丝酵母抗逆转录因子CgSTB5CgSEF1对酿酒酵母菌株糠醛耐受改造
作者:
基金项目:

国家自然科学基金(31970033)


Enhance Saccharomyces cerevisiae furfural tolerance by the introduction of Candida glycerinogenes transcription factors CgSTB5 or CgSEF1
Author:
  • JIANG Yudi

    JIANG Yudi

    Key Laboratory of Industrial Biotechnology, Ministry of Education;School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China;Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIN Yuyao

    QIN Yuyao

    Key Laboratory of Industrial Biotechnology, Ministry of Education;School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China;Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZONG Hong

    ZONG Hong

    Key Laboratory of Industrial Biotechnology, Ministry of Education;School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China;Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Xinyao

    LU Xinyao

    Key Laboratory of Industrial Biotechnology, Ministry of Education;School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China;Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHUGE Bin

    ZHUGE Bin

    Key Laboratory of Industrial Biotechnology, Ministry of Education;School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China;Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 纤维素是生物转化解决能源问题的主要原料之一,其水解物中存在严重影响抑制菌株生长的糠醛,需脱毒才可应用于发酵,提高菌株耐受性是解决纤维素水解液实际生产应用的关键。[目的] 酿酒酵母(Saccharomyces cerevisiae)是主要的纤维素水解液发酵工业菌株,但糠醛耐受性较低,通过分子改造获得具有高糠醛耐受性的菌株。[方法] 利用新获得的产甘油假丝酵母(Candida glycerinogenes)的相关抗逆转录因子CgSTB5CgSEF1CgCAS5,通过分子技术进行S.cerevisiae改造,考察其对酿酒酵母糠醛耐受性的影响,并尝试应用于未脱毒纤维素乙醇发酵。[结果] 单个表达CgSTB5CgSEF1的酿酒酵母,通过菌株点板实验表明菌株的糠醛耐受性提高25%以上,并且摇瓶发酵结果显示糠醛降解性能明显提高,生长延滞期明显缩短,S.cerevisiae W303/p414-CgSTB5的未脱毒纤维素乙醇发酵生产效率提高12.5%左右。[结论] 转录因子CgSTB5CgSEF1均能对提高酿酒酵母糠醛耐受性起到重要作用,并且有助于提高酿酒酵母菌株未脱毒纤维素乙醇发酵性能。

    Abstract:

    [Background] Cellulose is one of the main raw materials for biotransformation to solve energy problems. Furfural, existing in the cellulose hydrolysate, which seriously affects the growth inhibition of strains, must be detoxified before it can be applied in fermentation. Therefore, improving the strain tolerance of furfural is the key to solve the practical production application of cellulose hydrolysate. [Objective] Saccharomyces cerevisiae is a major industrial strain of cellulose hydrolysate fermentation, but it could not tolerant high furfural, and the strain with high furfural tolerance was obtained by molecular modification. [Methods] In this study, the furfural relevant transcription factors obtained from Candida glycerinogenes, CgSTB5, CgSEF1 and CgCAS5, were performed to modify S. cerevisiae to investigate their effects on furfural tolerance and apply to the ethanol fermentation of undetoxified cellulose. [Results] Expression of CgSTB5 or CgSEF1 could increase the furfural tolerance more than 25% in the spot plate experiment. The furfural degradation performance was significantly improved. The growth retardation period was shortened. The production efficiency of undetoxified cellulosic ethanol fermentation with S. cerevisiae W303/p414-CgSTB5 was increased by about 12.5%. [Conclusion] Both CgSTB5 and CgSEF1 could improve furfural tolerance in S. cerevisiae, which contribute to the improvement of the fermentation performance of undetoxified cellulosic ethanol in S. cerevisiae.

    参考文献
    [1] Ye GY, Zeng DF, Zhang SS, Fan MS, Zhang HD, Xie J. Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading[J]. Bioresource Technology, 2018, 257:23-29
    [2] Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain[J]. Microbial Biotechnology, 2008, 1(6):497-506
    [3] Liu ZL, Moon J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion[J]. Gene, 2009, 446(1):1-10
    [4] Zhao XX, Zhou C, Zhang SW, Wang LL, Lu YT, Ma MG. Study on furfural tolerance of recombinant Saccharomyces cerevisiae strain with fine-tune expression of MSN2 under ADH7 promoter control[J]. Microbiology China, 2015, 42(10):1903-1911(in Chinese)赵鲜仙, 周玚, 张思伟, 王琳璐, 路亚婷, 马孟根. ADH7启动子精细调控表达MSN2酿酒酵母菌株对糠醛耐受的研究[J]. 微生物学通报, 2015, 42(10):1903-1911
    [5] Zhao ML, Shi DC, Lu XY, Zong H, Zhuge B, Ji H. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant[J]. Bioresource Technology, 2019, 273:634-640
    [6] Zhao ML, Zhuge B, Lu XY, Zong H, Shi DC. Research progress in stress tolerance of industrial yeasts[J]. Microbiology China, 2019, 46(5):1155-1164(in Chinese)赵美琳, 诸葛斌, 陆信曜, 宗红, 施丁昌. 工业酵母抗逆机理研究进展[J]. 微生物学通报, 2019, 46(5):1155-1164
    [7] Lõoke M, Kristjuhan K, Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-based applications[J]. BioTechniques, 2011, 50(5):325-328
    [8] Gietz RD. Yeast transformation by the LiAc/SS carrier DNA/PEG method[J]. Methods in Molecular Biology, 2014, 1205:1-12
    [9] Sierkstra LN, Verbakel JM, Verrips CT. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae[J]. Journal of General Microbiology, 1992, 138(12):2559-2566
    [10] Liu ZL, Palmquist DE, Ma MG, Liu JB, Alexander NJ. Application of a master equation for quantitative mRNA analysis using qRT-PCR[J]. Journal of Biotechnology, 2009, 143(1):10-16
    [11] Molin M, Norbeck J, Blomberg A. Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone[J]. The Journal of Biological Chemistry, 2003, 278(3):1415-1423
    [12] Yuan SF, Guo GL, Hwang WS. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain[J]. Microbial Biotechnology, 2017, 10(6):1581-1590
    [13] Guo XK, Fang HY, Zhuge B, Zong H, Song J, Zhuge J, Du XX. budC knockout in Klebsiella pneumoniae for bioconversion from glycerol to 1,3-propanediol[J]. Biotechnology and Applied Biochemistry, 2013, 60(6):557-563
    [14] Wu Y, Wang JH, Zhao X. Enhanced furfural tolerance in Saccharomyces cerevisiae by the overexpression of GLN1 gene[J]. Biotechnology Bulletin, 2020, 36(8):69-78(in Chinese)吴宇, 王金华, 赵筱. GLN1基因过表达对提高酿酒酵母糠醛耐受性的研究[J]. 生物技术通报, 2020, 36(8):69-78
    [15] Matsufuji Y, Nakagawa T, Fujimura S, Tani A, Nakagawa J. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae[J]. Journal of Basic Microbiology, 2010, 50(5):494-498
    [16] Cadière A, Galeote V, Dequin S. The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway[J]. FEMS Yeast Research, 2010, 10(7):819-827
    [17] Ask M, Mapelli V, Höck H, Olsson L, Bettiga M. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials[J]. Microbial Cell Factories, 2013, 12:87
    [18] Yang F, Lu XY, Zong H, Ji H, Zhuge B. Gene expression profiles of Candida glycerinogenes under combined heat and high-glucose stresses[J]. Journal of Bioscience and Bioengineering, 2018, 126(4):464-469
    [19] Chen CB, Noble SM. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host[J]. PLoS Pathogens, 2012, 8(11):e1002956
    [20] Dmytruk K, Lyzak O, Yatsyshyn V, Kluz M, Sibirny V, Puchalski C, Sibirny A. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production[J]. Journal of Biotechnology, 2014, 172:11-17
    [21] Nasution O, Lee YM, Kim E, Lee Y, Kim W, Choi W. Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2017, 114(3):620-631
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜毓迪,秦语遥,宗红,陆信曜,诸葛斌. 分别利用产甘油假丝酵母抗逆转录因子CgSTB5CgSEF1对酿酒酵母菌株糠醛耐受改造[J]. 微生物学通报, 2021, 48(10): 3449-3456

复制
分享
文章指标
  • 点击次数:484
  • 下载次数: 1318
  • HTML阅读次数: 1405
  • 引用次数: 0
历史
  • 收稿日期:2021-01-29
  • 录用日期:2021-03-22
  • 在线发布日期: 2021-10-12
文章二维码