科微学术

微生物学通报

复合噬菌体裂解酶对白羽肉鸡肠道菌群结构和肝脏抗氧化酶指标的影响
作者:
基金项目:

国家自然科学基金(31760042)


Effects of complex phage lysin on growth performance, organ index and major antioxidant enzyme activities in white feather broilers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 噬菌体裂解酶具有良好的安全性与抑菌特性,有望替代抗生素作为一种饲料添加剂应用于改善畜禽肠道菌群和预防动物疾病。[目的] 以白羽肉鸡为饲喂对象,分别饲喂复合噬菌体裂解酶与抗生素制剂,评估噬菌体裂解酶对畜禽肠道菌群的影响及其作为替抗饲料添加剂的应用潜能。[方法] 以三日龄健康白羽肉鸡为饲喂对象,在基础饲粮上添加由噬菌体裂解酶(TSPphg)和噬菌体裂解酶(MMPphg)获得的复合噬菌体裂解酶制剂(200 mg/kg)与50μg/g的金霉素制剂,分别进行比较饲喂管理。利用第三代测序技术对28 d时白羽肉鸡肠道菌群进行高通量测序,借助生物信息学分析肠道菌群多样性和优势菌群(丰度前10)相对丰度,揭示各分组组间与组内差异,并对肝脏主要氧化酶活性进一步比较。[结果] 饲喂复合噬菌体裂解酶和金霉素制剂对白羽肉鸡肠道菌群有一定影响,均降低了肠道菌群丰度与多样性,而且Shannon指数与空白组相比存在显著差异(P<0.05)。优势菌群中,复合噬菌体裂解酶组相较于金霉素组和空白组,拟杆菌门的相对丰度发生了显著上升,而厚壁菌门的相对丰度发生了显著下降(P<0.05)。同时,在属水平上,粪杆菌属的相对丰度发生了显著上升,而螺杆菌属的相对丰度发生了显著下降(P<0.05),这一趋势与多数替代抗生素产品饲喂家禽后肠道菌群变化趋势类似,更有利于家禽肠道的健康。此外,饲喂复合噬菌体裂解酶组相较于金霉素组和空白组,过氧化氢酶(Catalase,CAT)和超氧化物歧化酶(Superoxide Dismutase,SOD)活性均发生了显著上升(P<0.05)。[结论] 噬菌体裂解酶能够有效改善畜禽肠道菌群,促进畜禽肠道菌群的微生态健康及提高机体免疫力,将噬菌体裂解酶替代抗生素应用于畜禽养殖具有较好的前景,值得进一步研究。

    Abstract:

    [Background] Phage lysin has good safety and antibacterial properties, and is expected to replace antibiotics as a feed additive to improve the intestinal flora of livestock and poultry and prevent animal diseases. [Objective] White feather broilers were fed with complex phage lyase and antibiotic preparations to evaluate the effect of phage lysin on the intestinal flora of livestock and poultry and its application potential as an alternative feed additive. [Methods] Three-day-old healthy white feather broilers were fed, and the basic diet was supplemented with (200 mg/kg) complex phage lysin prepared from Thermus bacteriophage lysin (TSPphg) and Subthermus bacteriophage lysin (MMPphg) the lysin preparation and the 50 μg/g chlortetracycline preparation were respectively compared for feeding management. The high-throughput sequencing on the intestinal flora of white feather broilers at 28 days using the third-generation high-throughput sequencing technology, With the help of bioinformatics analysis of intestinal flora diversity and the relative abundance of dominant flora (top ten relative abundance), reveal the differences between and within each group, and further compare the liver oxidase activities. [Results] Complex phage lysin and chlortetracycline preparation had a certain effect on the intestinal flora of white feather broilers, both of which decreased the abundance and diversity of intestinal flora, and the Shannon index was significantly different compared with the blank group (P<0.05). In the dominant intestinal bacteria, Bacteroidetes significantly increased and Firmicutes significantly decreased in the complex phage lysin group compared with chlortetracycline group and blank group (P<0.05). At the same time, at the genus level, the relative abundance of Faecalibacterium increased significantly, while the relative abundance of Helicobacter decreased significantly (P<0.05), this trend was similar to that of most alternative antibiotic products after feeding poultry intestinal flora, which was more conducive to the health of poultry intestines. In addition, compared with chlortetracycline group and blank group, the activities of catalase (CAT) and superoxide dismutase (SOD) in complex phage lysin group were significantly increased go up (P<0.05). [Conclusion] Phage lysin can effectively improve the intestinal flora of livestock and poultry, promote the micro-ecological health of the intestinal livestock and poultry and improve the immunity of the body. It has a good prospect to replace antibiotics with phage lysin in livestock and poultry breeding and is worth further study.

    参考文献
    [1] Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials[J]. Future Microbiology, 2012, 7(10):1147-1171
    [2] Loessner MJ. Bacteriophage endolysins-current state of research and applications[J]. Current Opinion in Microbiology, 2005, 8(4):480-487
    [3] Borysowski J, Weber-Dabrowska B, Górski A. Bacteriophage endolysins as a novel class of antibacterial agents[J]. Experimental Biology and Medicine, 2006, 231(4):366-377
    [4] Nelson D, Schuch R, Chahales P, Zhu SW, Fischetti VA. PlyC:a multimeric bacteriophage lysin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(28):10765-10770
    [5] Baker JR, Liu CB, Dong SL, Pritchard DG. Endopeptidase and glycosidase activities of the bacteriophage B30 lysin[J]. Applied and Environmental Microbiology, 2006, 72(10):6825-6828
    [6] Carlos SJ́, Ricardo P, Graca V, Mário AS. The n-terminal region of the bacteriophage fog44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells[J]. Journal of Bacteriology, 2000, 182(20):5823-5831
    [7] Entenza JM, Loeffler JM, Grandgirard D, Fischetti VA, Moreillon P. Therapeutic effects of bacteriophage cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(11):4789-4792
    [8] Walmagh M, Boczkowska B, Grymonprez B, Briers Y, Drulis-Kawa Z, Lavigne R. Characterization of five novel endolysins from Gram-negative infecting bacteriophages[J]. Applied Microbiology and Biotechnology, 2013, 97(10):4369-4375
    [9] Fischetti VA. Bacteriophage endolysins:a novel anti-infective to control Gram-positive pathogens[J]. International Journal of Medical Microbiology, 2010, 300(6):357-362
    [10] Loessner MJ, Wendlinger G, Scherer S. Heterogeneous endolysins in Listeria monocytogenes bacteriophages:a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes[J]. Molecular Microbiology, 1995, 16(6):1231-1241
    [11] Lei CL, Dong GZ. Regulation of intestinal mucosal immunity by intestinal flora in animals[J]. Chinese Journal of Animal Nutrition, 2012, 24(3):416-422(in Chinese)雷春龙, 董国忠. 肠道菌群对动物肠黏膜免疫的调控作用[J]. 动物营养学报, 2012, 24(3):416-422
    [12] Liu CH, Yang XQ, Liu CH, He Y, Wang LJ. Allergic airway response associated with the intestinal microflora disruption induced by antibiotic therapy[J]. Chinese Journal of Pediatrics, 2007, 45(6):450-454(in Chinese)刘崇海, 杨锡强, 刘春花, 何云, 王莉佳. 变应性气道反应与抗生素诱导的肠道菌群失调关系研究[J]. 中华儿科杂志, 2007, 45(6):450-454
    [13] Jiang ZY, Zhou YM, Xu Y, Jia DH, Wang GL, Wang T. Effects of xylooligosaccharides, probiotics and antibiotics on intestinal microflora and performance of broilers[J]. Ecology of Domestic Animal, 2005, 26(2):11-15(in Chinese)蒋正宇, 周岩民, 许毅, 贾代汉, 王桂玲, 王恬. 低聚木糖、益生菌及抗生素对肉鸡肠道菌群和生产性能的影响[J]. 家畜生态学报, 2005, 26(2):11-15
    [14] Yu LX, Schwabe RF. The gut microbiome and liver cancer:mechanisms and clinical translation[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(9):527-539
    [15] Chen QC, Saatkamp HW, Cortenbach J, Jin WD. Comparison of Chinese broiler production systems in economic performance and animal welfare[J]. Animals, 2020, 10(3):491
    [16] Niu JL, Zhang J, Wei LQ, Ma X, Zhang WJ, Nie CX. Cottonseed meal fermented by Candida tropical reduces the fat deposition in white-feather broilers through cecum bacteria-host metabolic cross-talk[J]. Applied Microbiology and Biotechnology, 2020, 104(10):4345-4357
    [17] Niu JL, Wei LQ, Luo YQ, Yang WT, Lu QC, Zheng XX, Niu YJ, Sheng W, Cheng H, Zhang WJ, et al. Fermented cottonseed meal improves production performance and reduces fat deposition in broiler chickens[J]. Animal Bioscience, 2021, 34(4):680-691
    [18] Gu XX, Zhang J, Li JJ, Wang ZH, Feng J, Li JZ, Pan KC, Ni XQ, Zeng D, Jing B, et al. Effects of Bacillus cereus PAS38 on immune-related differentially expressed genes of spleen in broilers[J]. Probiotics and Antimicrobial Proteins, 2020, 12(2):425-438
    [19] Wang F, Ji XY, Li QP, Zhang GL, Peng JN, Hai J, Zhang Y, Ci BQ, Li HW, Xiong Y, et al. TSPphg lysin from the extremophilic Thermus bacteriophage TSP4 as a potential antimicrobial agent against both Gram-negative and Gram-positive pathogenic bacteria[J]. Viruses, 2020, 12(2):192
    [20] Ji XY. Study on the bacteriostasis of lysin TSPpgh from a thermophilic phage[D]. Kunming:Master's Thesis of Kunming University of Science and Technology, 2019(in Chinese)嵇歆彧. 高温噬菌体裂解酶TSPpgh的抑菌作用研究[D]. 昆明:昆明理工大学硕士学位论文, 2019
    [21] Xiong Y. Characteristics of Meiothermus phage MMP7' genomics and its lysin MMPpgh[D]. Kunming:Master's Thesis of Kunming University of Science and Technology, 2019(in Chinese)熊燕. 亚栖热菌噬菌体MMP7的基因组及裂解酶MMPpgh的特征研究[D]. 昆明:昆明理工大学硕士学位论文, 2019
    [22] Lin LB, Zhang GL, Xiong Y, Ji XY, Cai SB, Deng XY, Wang F, Zhang QL, Guo J. Bacteriophage lysin complex powder and its preparation method and application:CN110592056A[P]. 2019-12-20(in Chinese)林连兵, 张关令, 熊燕, 嵇歆彧, 蔡赛波, 邓先余, 王峰, 张棋麟, 郭军. 噬菌体裂解酶复合粉剂及其制备方法和应用:CN110592056A[P]. 2019-12-20
    [23] Li CZ, Zhang HF. NRC (1998) 10th edition of pig nutritional needs scale[J]. Animal Science Abroad:Feed, 1998(3):37-48(in Chinese)李长忠, 张宏福. NRC (1998)第十版猪营养需要量表[J]. 国外畜牧学:饲料, 1998(3):37-48
    [24] Xiong BH, Luo QY, Zhou ZK. Tables of feed composition and nutritive values in China (2018 twenty-ninth edition)[J]. China Feed,2019(21):63-73(in Chinese)熊本海, 罗清尧, 周正奎. 中国饲料成分及营养价值表(2018年第29版)制订说明[J]. 中国饲料, 2019(21):63-73
    [25] Chen J. General Administration of Quality Supervision Introduction to the latest national standards issued by the National Standards Committee[J]. Supervision and Selection, 2005(10):18-19(in Chinese)陈九. 国家质检总局国家标准委最新颁布的国家标准简介[J]. 监督与选择, 2005(10):18-19
    [26] Zeng CX, Lin M, Li ZQ, Ma Y, Wang SH. The structural and functional characteristics of the gut microbiota of Marsupenaeus japonicus as revealed by 16S rRNA gene amplicon sequencing[J]. Microbiology China, 2020, 47(6):1857-1866(in Chinese)曾晨爔, 林茂, 李忠琴, 马英, 王淑红. 基于16S rRNA基因扩增子测序分析日本囊对虾肠道菌群结构与功能的特征[J]. 微生物学通报, 2020, 47(6):1857-1866
    [27] Wei BL, Liu CG, Xiao YS, Peng Z, Huang T, Guan QQ, Xiong T. Bacterial diversity analysis using Illumina HiSeq sequencing of Jiangshui, a Chinese fermented vegetable food, and its physicochemical properties[J]. Food Science, 2019, 40(6):62-68(in Chinese)魏本良, 刘长根, 肖阳生, 彭珍, 黄涛, 关倩倩, 熊涛. 基于Illumina HiSeq技术分析浆水中细菌多样性及理化性质[J]. 食品科学, 2019, 40(6):62-68
    [28] Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963
    [29] Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120
    [30] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200
    [31] Duncan DB. Multiple range and multiple F tests[J]. Biometrics, 1955, 11(1):1
    [32] Yuan L, Li WL, Du CH, Wang ZX, Yi BD, Wang MF. Effects of coptidis powder for detoxification and flavomycin on ileal microflora in broilers of different ages[J]. Journal of Henan Agricultural Sciences, 2020, 49(2):142-149(in Chinese)袁林, 李万利, 杜晨红, 王志祥, 易宝弟, 王明发. 黄连解毒散和黄霉素对不同日龄肉鸡回肠菌群结构的影响[J]. 河南农业科学, 2020, 49(2):142-149
    [33] Zhu BQ, Ding XM, Yu B, Chen DW, Wu XQ. Effects of dietary organic acids and flavomycin on production performance and gut micro-ecology in broilers[J]. Feed and Husbandrs targeted Escherichia co杬硩氼/i举阠桏15伷儺H7阠乩敮 f呥祥罤lo奴吠杣条酴呴鹬靥絛孊聝鸮甠乊息聵卲聮遡彬甠息彦吠癆歯软d Pro饴敥乣畴物on, 2010, 73(7):1304-1312
    [49] Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis[J]. Nature, 2002, 418(6900):884-889unctional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415):242-249
    [36] Wang HL, Liu DD, Jiang SW, Wang JQ, Wang Z, Sun TL. Effects of compound probiotics and Astragalus polysaccharide on growth performance, intestinal microflora and immune function of broilers[J]. Feed Industry, 2014, 35(6):10-14(in Chinese)王虹玲, 刘丹丹, 姜诗文, 王家庆, 汪琢, 孙天利. 复合微生态制剂与黄芪多糖对肉鸡生长性能、肠道菌群和免疫功能的影响[J]. 饲料工业, 2014, 35(6):10-14
    [37] Kanda T, Hiroi M, Sugiyama K, Kubo R, Noda Y, Hara-Kudo Y, Matsui S, Iida N, Ohashi N. Factors for occurrence of extended-spectrum beta-lactamase-producing Escherichia coli in broilers[J]. The Journal of Veterinary Medical Science, 2012, 74(12):1635-1637
    [38] Jia G, Yan JY, Wang H, Huang L, Liu XL, Wang KN. Effects of slow-release compound acidifiers on gastrointestinal pH and immune index of avine broilers and ammonia concentration in chicken house[J]. Chinese Journal of Animal Nutrition, 2009, 21(5):747-754(in Chinese)贾刚, 晏家友, 王辉, 黄兰, 刘小莉, 王康宁. 缓释复合酸化剂对艾维茵白羽肉鸡消化道酸度、免疫指标及鸡舍氨浓度的影响[J]. 动物营养学报, 2009, 21(5):747-754
    [39] Yu JM, Che Z, Qi XY, Xie QX, Zheng JH, Liu XJ, Gu W, Shan BL. Effects of compound probiotics and antibiotics on growth performance, intestinal flora and immune function of broilers[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(8):2219-2226(in Chinese)于佳民, 陈振, 齐秀晔, 谢全喜, 郑军红, 刘学江, 谷巍, 单宝龙. 复合微生态制剂、饲用抗生素对肉鸡生长性能、肠道菌群数量和免疫性能的影响[J]. 中国畜牧兽医, 2018, 45(8):2219-2226
    [40] Endo A, Irisawa T, Futagawa-Endo Y, Salminen S, Ohkuma M, Dicks L. Lactobacillus faecis sp. nov., isolated from animal faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 12):4502-4507
    [41] Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, Lipuma L, Ling LL, Gobourne A, No D, et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization[J]. Infection and Immunity, 2013, 81(3):965-973
    [42] Stewart CS, Duncan SH, Flint HJ. The properties of forms of Ruminococcus flavefaciens which differ in their ability to degrade cotton cellulose[J]. FEMS Microbiology Letters, 1990, 72(1/2):47-50
    [43] Hu SK, Xu JG. Research of Helicobacter spp. and its pathogenicity[J]. Disease Surveillance, 2014, 29(4):321-326(in Chinese)胡守奎, 徐建国. 螺杆菌属及其致病性研究[J]. 疾病监测, 2014, 29(4):321-326
    [44] Wang F, Zhang GL, Peng JN, Ji XY, Hai J, Deng XY, Lin LB. High cell-density fermentation, expression and purification of bacteriophage lysin TSPphg, a thermostable antimicrobial protein from extremophilic Thermus bacteriophage TSP4[J]. Protein Expression and Purification, 2020, 174:105676
    [45] Wang F, Ji XY, Li QP, Zhang GL, Peng JN, Hai J, Zhang Y, Ci BQ, Li HW, Xiong Y, et al. TSPphg lysin from the extremophilic Thermus bacteriophage TSP4 as a potential antimicrobial agent against both Gram-negative and Gram-positive pathogenic bacteria[J]. Viruses, 2020, 12(2):192
    [46] Reinbold JB, Coetzee JF, Hollis LC, Nickell JS, Riegel C, Olson KC, Ganta RR. The efficacy of three chlortetracycline regimens in the treatment of persistent Anaplasma marginale infection[J]. Veterinary Microbiology, 2010, 145(1/2):69-75
    [47] Chen H, Wang CJ, Simujide, Zhang C, Cao JM, Wu ST, Xu P, Liu FH, Aorigele. Effects of supplementary feeding on growth performance, body size indexes and serum antioxidant, biochemical indexes of grazing cows during growing period[J]. Chinese Journal of Animal Nutrition, 2020, 32(11):5267-5274(in Chinese)陈浩, 王纯洁, 斯木吉德, 张晨, 曹家铭, 武思同, 徐萍, 刘飞鸿, 敖日格乐. 育成期补饲对放牧牛生长性能、体尺指标及血清抗氧化、生化指标的影响[J]. 动物营养学报, 2020, 32(11):5267-5274
    [48] Stanford K, McAllister TA, Niu YD, Stephens TP, Mazzocco A, Waddell TE, Johnson RP. Oral delivery systems for encapsulated bacteriophage
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨瑞思,江宇航,张关令,王峰,王春,张棋麟,林连兵. 复合噬菌体裂解酶对白羽肉鸡肠道菌群结构和肝脏抗氧化酶指标的影响[J]. 微生物学通报, 2021, 48(9): 3116-3129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-07
  • 录用日期:2021-03-24
  • 在线发布日期: 2021-09-08
文章二维码