科微学术

微生物学通报

植物内生链霉菌Streptomyces sp. SAT1的基因组测序和比较基因组分析
作者:
基金项目:

中央高校基本科研业务费(2017ZY14)


Genome sequencing and comparative genome analysis of Streptomyces sp. SAT1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 一直以来,链霉菌都是活性物质的主要生产者,近年来随着抗生素滥用引起的环境和微生物抗药性问题越发严重,挖掘高效生物防治因子和新型抗生素成为了解决以上问题的重要手段。[目的] 通过获得植物内生链霉菌SAT1全基因组序列和次级代谢基因簇信息,利用比较基因组学和泛基因组学分析SAT1菌株的特殊性以及与其他链霉菌的共性,为阐明SAT1抑菌和内生机制提供理论基础,为揭示链霉菌的生态功能提供可靠数据。[方法] 通过三代测序平台PacBio Sequel完成SAT1基因组测序,利用生物信息学技术进行注释和功能基因分类;分别利用RAxML和PGAP软件进行系统发育树的构建和泛基因组分析;次级代谢基因簇的预测和分析通过antiSMASH网站完成。[结果] 获得SAT1菌株的全基因组完成图,该菌线性染色体长度约7.47 Mb,包含有4个质粒,GC含量近73%,共预测到7 550个蛋白编码基因,含有37个次级代谢基因簇,分属29个类型,其中默诺霉素基因簇与加纳链霉菌具有较高相似性。42株代表链霉菌中,单个菌株次级代谢基因簇数量为20-55个,主要类型为PKS类、Terpene类和Nrps类,而且含有大量杂合基因簇,各个菌株中特有基因数目较为庞大。[结论] 链霉菌SAT1菌株在基因组特点以及次级代谢基因簇的数量和类型上与其余41株链霉菌具有一定的共性,其中潮霉素B基因簇和默诺霉素基因簇合成的相关物质可能与SAT1抑菌活性密切相关。42株链霉菌中次级代谢基因簇数量的多少与基因组大小成正相关,同时大量杂合基因簇以及庞大的特有基因数目的存在说明链霉菌在长期进化过程中存在了很高程度的水平基因转移现象,可能具有重要的生态功能。

    Abstract:

    [Background] Streptomyces has always been the main producer of bioactive compounds. However, as the abusing of antibiotics, environmental pollution and drug resistance are becoming increasingly serious problem. The discovery of efficient bio-control factor and novel antibiotics becomes the main methods to solve these problems. [Objective] Obtain the whole genome sequence of the Streptomyces sp. SAT1 and the information about its secondary metabolite gene clusters; analyze the particularity and generality with other streptomycetes by the technology of comparative genomics and pan genomics. Form this, we could provide theoretical basis for illuminating the mechanism of bacteriostasis and growth-promoting in SAT1, and reliable data to reveal the ecological function of Streptomyces. [Methods] The sequence of SAT1 was completed by the third generation sequencing platform PacBio Sequel, then annotated and classified by bio-information technology; the software RAxML and PGAP was used to construct phylogenetic tree and analyze pan-genome, respectively. The prediction and analyze of the secondary metabolite gene clusters was achieved by antiSMASH. [Results] From the complete genome map of SAT1, the length of linear chromosome is 7.47 Mb, with 73% GC content, and four plasmids exist in the strain. Additionally, there are 7 550 genes which encoded proteins and 37 secondary metabolite gene clusters which classified by 29 types in SAT1. And the moenomycin gene cluster was highly homologous to Streptomyces ghanaesis ATCC14672 moenomycin gene cluster. In the 42 streptomycetes, it exists about 20-55 secondary metabolites gene clusters in each strain which classified into PKS, Terpene, Nrps and Heterozygous gene clusters. The dispensable genome was huge in these research objectives. [Conclusion] Streptomyces sp. SAT1 has many common points in the trait of genome and secondary gene clusters with other streptomycetes. We speculate the moenomycin and hygromycin_B gene clusters play an important role in the antibacterial activity of SAT1. In the 42 research objectives, the number of gene clusters and the size of genome has a positive correlation. In addition, the existence of abundant heterozygous gene clusters and large number of dispensable genome illustrate Streptomyces has high levels of horizon gene transfer over long periods of evolution, which possesses important environmental functions.

    参考文献
    [1] Liu YX, Zhao Y, Zhang BX, Yang YM, Fan ST, Li CY, Wang Y, Xu PL, Qin HY, Lu WP. Research progress on the source and biological function of plant endophytic bacteria[J]. Special Wild Economic Animal and Plant Research, 2020, 42(4):60-67(in Chinese)刘迎雪, 赵滢, 张宝香, 杨义明, 范书田, 李昌禹, 王月, 许培磊, 秦红艳, 路文鹏. 植物内生细菌来源及生物学功能研究进展[J]. 特产研究, 2020, 42(4):60-67
    [2] Si HY. Isolation, purification and structure identification of active metabolites from Streptomyces fungicidicus[D]. Shenyang:Master's Thesis of Shenyang Agricultural University, 2019(in Chinese)司洪阳. 杀真菌链霉菌(Streptomyces fungicidicus)代谢产物的分离纯化及结构鉴定[D]. 沈阳:沈阳农业大学硕士学位论文, 2019
    [3] Ge YY, Liu XY, Dou GM, Ma YC. Antimicrobial activities and efficacy of endophytic Streptomyces sp. SSD49 in plant disease control and plant-growth-promoting[J]. Biotechnology Bulletin, 2017, 33(6):121-127(in Chinese)葛优优, 刘晓瑜, 窦桂铭, 马玉超. 内生链霉菌SSD49的抑菌活性和防病促生效果[J]. 生物技术通报, 2017, 33(6):121-127
    [4] Paterson J, Jahanshah G, Li Y, Wang Q, Mehnaz S, Gross H. The contribution of genome mining strategies to the understanding of active principles of PGPR strains[J]. FEMS Microbiology Ecology, 2017, 93(3):fiw249
    [5] Hopwood DA. Soil to genomics:the Streptomyces chromosome[J]. Annual Review of Genetics, 2006, 40(1):1-23
    [6] Yin Y, Ge M, Chen DJ. New methods, new technologies and discovery of novel antibiotics[J]. Microbiology China, 2013, 40(10):1874-1884(in Chinese)殷瑜, 戈梅, 陈代杰. 新方法新技术与新型抗生素发现[J]. 微生物学通报, 2013, 40(10):1874-1884
    [7] Farnet CM, Dimitriadou V, Bachmann BO. Farnesyl dibenzodiazepinones and methods of treating cancer using same:US, US7186713[P]. 2007-03-06
    [8] Tian J, Chen HY, Guo ZY, Liu N, Li JE, Huang Y, Xiang WS, Chen YH. Discovery of pentangular polyphenols hexaricins A-C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining[J]. Applied Microbiology and Biotechnology, 2016, 100(9):4189-4199
    [9] Tian WJ. The antimicrobial activity of the endophytic Streptomyces sp. SAT1 and the regulatory function of wblA[D]. Beijing:Master's Thesis of Beijing Forestry University, 2019(in Chinese)田文佳. 内生链霉菌SAT1的抑菌活性特征及wblA基因的调控功能[D] 北京:北京林业大学硕士学位论文, 2019
    [10] Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM. Correction:corrigendum:assembling large genomes with single-molecule sequencing and locality-sensitive hashing[J]. Nature Biotechnology, 2015, 33(10):623-630
    [11] Besemer J, Lomsadze A, Borodovsky M. GeneMarkS:a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions[J]. Nucleic Acids Research, 2001, 29(12):2607-2618
    [12] Saha S, Bridges S, Magbanua ZV, Peterson DG. Empirical comparison of ab initio repeat finding programs[J]. Nucleic Acids Research, 2008, 36(7):2284-2294
    [13] Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer:consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Research, 2007, 35(9):3100-3108
    [14] Lowe TM, Eddy SR. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25(5):955-964
    [15] Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, et al. Rfam:updates to the RNA families database[J]. Nucleic Acids Research, 2009, 37(Database issue):D136-D140
    [16] Bertelli C, Brinkman FSL. Improved genomic island predictions with IslandPath-DIMOB[J]. Bioinformatics, 2018, 34(13):2161-2167
    [17] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology:tool for the unification of biology[J]. Nature Genetics, 2000, 25(1):25-29
    [18] Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al. The COG database:an updated version includes eukaryotes[J]. BMC Bioinformatics, 2003, 4(1):41
    [19] Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families[J]. Science, 1997, 278(5338):631-637
    [20] Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics:new developments in KEGG[J]. Nucleic Acids Research, 2006, 34(Suppl_1):D354-D357
    [21] Kanehisa M. A database for post-genome analysis[J]. Trends in Genetics, 1997, 13(9):375-376
    [22] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(Database issue):D277-D280
    [23] Liu XY, Dou GM, Ma YC. Screening and identification of antagonistic SAT1 and its potential for biocontrol of pepper Phytophthora blight[J]. Guangdong Agricultural Sciences, 2014, 41(19):75-79,85(in Chinese)刘晓瑜, 窦桂铭, 马玉超. 生防链霉菌SAT1的分离、鉴定及其对辣椒疫霉的生物防治潜力[J]. 广东农业科学, 2014, 41(19):75-79,85
    [24] DiCenzo GC, Finan TM. The divided bacterial genome:structure, function, and evolution[J]. Microbiology and Molecular Biology Reviews, 2017, 81(3):e00019-17
    [25] Ostash B, Doud EH, Lin C, Ostash I, Perlstein DL, Fuse S, Wolpert M, Kahne D, Walker S. Complete characterization of the seventeen step moenomycin biosynthetic pathway[J]. Biochemistry, 2009, 48(37):8830-8841
    [26] Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A, Martinez-Urtaza J, Barrientos L. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery[J]. Scientific Reports, 2019, 9(1):7488
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王莎,窦桂铭,马玉超. 植物内生链霉菌Streptomyces sp. SAT1的基因组测序和比较基因组分析[J]. 微生物学通报, 2021, 48(9): 3039-3053

复制
分享
文章指标
  • 点击次数:538
  • 下载次数: 1367
  • HTML阅读次数: 1801
  • 引用次数: 0
历史
  • 收稿日期:2020-12-06
  • 录用日期:2021-03-01
  • 在线发布日期: 2021-09-08
文章二维码