科微学术

微生物学通报

有机磷酸酯阻燃剂/增塑剂的生物降解及其机制研究进展
作者:
基金项目:

国家自然科学基金(41807384);中国博士后科学基金项目(2018M630304);辽宁省自然科学基金重点项目(20170520384)


Research progress on biodegradation process and mechanism of organophosphate esters flame retardants/plasticizers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    有机磷酸酯(Organophosphate Esters,OPEs)阻燃剂/塑化剂对人类有潜在的健康风险并且广泛分布在各种环境介质中,为应对OPEs带来的挑战,绿色、高效的生物降解方式成为了当前的研究热点。文章目的是叙述目前已知的OPEs的生物降解过程及机制,主要围绕TBP、TPHP这2种热点OPEs来描述生物降解途径及其中间产物。综合来看,生物降解OPEs的主要途径是通过水解作用、羟基化作用或者甲氧基化作用来实现的,在降解过程中细胞色素P450起关键作用,最终多数降解菌能够将OPEs矿化为无机磷酸盐及其他小分子化合物,能够实现对环境的无害化。

    Abstract:

    Organophosphate esters (OPEs) flame retardants/plasticizers have potential adverse effects on human health and are widely detected in various environmental media. To effectively control the pollution of OPEs, green and efficient biodegradation methods have become the research hotspot. The purpose of this paper is to elucidate the biodegradation process and mechanism of OPEs, mainly focusing on the biodegradation pathways and intermediate products of TBP and TPHP. In general, hydrolysis, hydroxylation, and methoxylation are the major biodegradation pathways of OPEs. Cytochrome P450 plays a key role in the process of degradation. Most of the degradation bacteria can mineralize OPEs into inorganic phosphates and other small molecular compounds which are harmless to the environment.

    参考文献
    [1] Darnerud PO. Toxic effects of brominated flame retardants in man and in wildlife[J]. Environment International, 2003, 29(6):841-853
    [2] Li D, Zhang SH, Zhang Q, Wang B, Pu YQ, Zhao X, Li H, Song NH, Guo RX. Occurrence and risk assessment of organophosphate esters in source water of the Nanjing section of the Yangtze River[J]. Environmental Science, 2020, 41(1):205-212(in Chinese)李栋, 张圣虎, 张芹, 王博, 卜元卿, 赵欣, 李辉, 宋宁慧, 郭瑞昕. 长江南京段水源水中有机磷酸酯的污染特征与风险评估[J]. 环境科学, 2020, 41(1):205-212
    [3] Zhuang Y. Distribution and sources apportionment of organophosphorus ester flame retardants in water and sediments from Taihu lake and surrounding rivers[D]. Nanjing:Master's Thesis of Nanjing University, 2015(in Chinese)庄园. 有机磷酸酯阻燃剂在太湖及其周边河流水体中的分布和源解析[D]. 南京:南京大学硕士学位论文, 2015
    [4] Tan HL, Chen D, Peng CF, Liu XT, Wu Y, Li X, Du R, Wang B, Guo Y, Zeng EY. Novel and traditional organophosphate esters in house dust from South China:association with hand wipes and exposure estimation[J]. Environmental Science & Technology, 2018, 52(19):11017-11026
    [5] He CT, Zheng J, Qiao L, Chen SJ, Yang JZ, Yuan JG, Yang ZY, Mai BX. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of Southern China and implications for human exposure[J]. Chemosphere, 2015, 133:47-52
    [6] Luo Q, Shan Y, Muhammad A, Wang SY, Sun LN, Wang H. Levels, distribution, and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang, China[J]. Environmental Science and Pollution Research, 2018, 25(31):31752-31761
    [7] Brommer S, Harrad S, Van Den Eede N, Covaci A. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples[J]. Journal of Environmental Monitoring, 2012, 14(9):2482-2487
    [8] Föllmann W, Wober J. Investigation of cytotoxic, genotoxic, mutagenic, and estrogenic effects of the flame retardants tris-(2-chloroethyl)-phosphate (TCEP) and tris-(2-chloropropyl)-phosphate (TCPP) in vitro[J]. Toxicology Letters, 2006, 161(2):124-134
    [9] Fang H, Tong WD, Branham WS, Moland CL, Dial SL, Hong HX, Xie Q, Perkins R, Owens W, Sheehan DM. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor[J]. Chemical Research in Toxicology, 2003, 16(10):1338-1358
    [10] Meeker JD, Stapleton HM. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters[J]. Environmental Health Perspectives, 2010, 118(3):318-323
    [11] Luo Q, Gu LY, Wu ZP, Shan Y, Wang H, Sun LN. Distribution, source apportionment and ecological risks of organophosphate esters in surface sediments from the Liao River, Northeast China[J]. Chemosphere, 2020, 250:126297
    [12] Luo Q, Gu LY, Shan Y, Wang H, Sun LN. Human health risk assessment of organophosphate esters in urban topsoils of Shenyang, China[J]. Polish Journal of Environmental Studies, 2020, 29(4):2731-2742
    [13] Reemtsma T, Weiss S, Mueller J, Petrovic M, González S, Barcelo D, Ventura F, Knepper TP. Polar pollutants entry into the water cycle by municipal wastewater: a European perspective[J]. Environmental Science & Technology, 2006, 40(17):5451-5458
    [14] Liu Q. Photocatalytic degradation of chlorinated phosphate flame retardants in TiO2 aqueous solution[D]. Nanjing:Master's Thesis of Nanjing University, 2013(in Chinese)刘青. TiO2光催化降解水体中氯代有机磷酸酯类阻燃剂研究[D]. 南京:南京大学硕士学位论文, 2013
    [15] Liu ZF, Ding B, Liu ZZ, Zhan SJ, Zhuo WS, Chen JC. A dynamical study on oxidation degradation of OPEs in water by fenton's reagent[J]. Journal of Subtropical Resources and Environment, 2016, 11(1):1-8(in Chinese)刘祖发, 丁波, 刘珍珍, 詹绍君, 卓文珊, 陈记臣. Fenton试剂氧化降解水体有机磷酸酯的动力学研究[J]. 亚热带资源与环境学报, 2016, 11(1):1-8
    [16] Thomas RAP, Morby AP, MacAskie LE. The biodegradation of tributyl phosphate by naturally occurring microbial isolates[J]. FEMS Microbiology Letters, 1997, 155(2):155-159
    [17] Nancharaiah YV, Kiran Kumar Reddy G, Krishna Mohan TV, Venugopalan VP. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms[J]. Journal of Hazardous Materials, 2015, 283:705-711
    [18] Ahire KC, Kapadnis BP, Kulkarni GJ, Shouche YS, Deopurkar RL. Biodegradation of tributyl phosphate by novel bacteria isolated from enrichment cultures[J]. Biodegradation, 2012, 23(1):165-176
    [19] Kulkarni SV, Markad VL, Melo JS, D'Souza SF, Kodam KM. Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3[J]. Applied Microbiology and Biotechnology, 2014, 98(2):919-929
    [20] Liu J, Lin H, Dong YB, Li B. Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings[J]. Environmental Pollution, 2019, 250:284-291
    [21] Yang Y, Yin H, Peng H, Lu GN, Dang Z. Biodegradation of triphenyl phosphate using an efficient bacterial consortium GYY:degradation characteristics, metabolic pathway and 16S rRNA genes analysis[J]. Science of the Total Environment, 2020, 713:136598
    [22] Wei K. Biodegradation mechanism of triphenyl phosphate and toxicity of its metabolites[D]. Guangzhou:Doctoral Dissertation of South China University of Technology, 2018(in Chinese)卫昆. 磷酸三苯酯的微生物降解机制及其降解产物毒性研究[D]. 广州:华南理工大学博士学位论文, 2018
    [23] Kawagoshi Y, Nakamura S, Nishio T, Fukunaga I. Isolation of aryl-phosphate ester-degrading bacterium from leachate of a sea-based waste disposal site[J]. Journal of Bioscience and Bioengineering, 2004, 98(6):464-469
    [24] Abe K, Yoshida S, Suzuki Y, Mori J, Doi Y, Takahashi S, Kera Y. Haloalkylphosphorus hydrolases purified from Sphingomonas sp. strain TDK1 and Sphingobium sp. strain TCM1[J]. Applied and Environmental Microbiology, 2014, 80(18):5866-5873
    [25] Wei K, Yin H, Peng H, Lu GN, Dang Z. Bioremediation of triphenyl phosphate by Brevibacillus brevis:degradation characteristics and role of cytochrome P450 monooxygenase[J]. Science of the Total Environment, 2018, 627:1389-1395
    [26] Wang JH, Khokhar I, Ren C, Li XJ, Wang JY, Fan SH, Jia Y, Yan YC. Characterization and 16S metagenomic analysis of organophosphorus flame retardants degrading consortia[J]. Journal of Hazardous Materials, 2019, 380:120881
    [27] Hou R, Xu YP, Wang ZJ. Review of OPFRs in animals and humans:absorption, bioaccumulation, metabolism, and internal exposure research[J]. Chemosphere, 2016, 153:78-90
    [28] Rangu SS, Muralidharan B, Tripathi SC, Apte SK. Tributyl phosphate biodegradation to butanol and phosphate and utilization by a novel bacterial isolate, Sphingobium sp. strain RSMS[J]. Applied Microbiology and Biotechnology, 2014, 98(5):2289-2296
    [29] Jurgens SS, Helmus R, Waaijers SL, Uittenbogaard D, Dunnebier D, Vleugel M, Kraak MHS, De Voogt P, Parsons JR. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge[J]. Chemosphere, 2014, 111:238-242
    [30] Fu ZQ, Chen JW, Wang Y, Hong HX, Xie HB. Quantum chemical simulations revealed the toxicokinetic mechanisms of organic phosphorus flame retardants catalyzed by P450 enzymes[J]. Journal of Environmental Science and Health, Part C, 2018, 36(4):272-291
    [31] Hou R, Luo XS, Liu CC, Zhou LH, Wen JL, Yuan Y. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems:knetics, pathway and degradation mechanisms[J]. Environmental Pollution, 2019, 254:113040
    [32] Mulbry WW, Karns JS. Parathion hydrolase specified by the Flavobacterium opd gene:relationship between the gene and protein[J]. Journal of Bacteriology, 1989, 171(12):6740-6746
    [33] Mao P, Qiao DJ, Ma XR. Cytochrome P450 and iatrology[J]. Chinese Journal of Antibiotics, 2011, 36(2):93-101(in Chinese)毛萍, 乔定君, 马欣荣. 细胞色素P450和医学[J]. 中国抗生素杂志, 2011, 36(2):93-101
    [34] Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS. Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs)[J]. Biochemical and Biophysical Research Communications, 2010, 399(4):492-497
    [35] Berne C, Pignol D, Lavergne J, Garcia D. CYP201A2, a cytochrome P450 from Rhodopseudomonas palustris, plays a key role in the biodegradation of tributyl phosphate[J]. Applied Microbiology and Biotechnology, 2007, 77(1):135-144
    [36] Berne C, Allainmat B, Garcia D. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria[J]. Biotechnology Letters, 2005, 27(8):561-566
    [37] Xiang DF, Bigley AN, Ren ZJ, Xue HR, Hull KG, Romo D, Raushel FM. Interrogation of the substrate profile and catalytic properties of the phosphotriesterase from Sphingobium sp. strain TCM1:an enzyme capable of hydrolyzing organophosphate flame retardants and plasticizers[J]. Biochemistry, 2015, 54(51):7539-7549
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谷雷严,罗庆,吴中平. 有机磷酸酯阻燃剂/增塑剂的生物降解及其机制研究进展[J]. 微生物学通报, 2021, 48(8): 2853-2859

复制
分享
文章指标
  • 点击次数:828
  • 下载次数: 1051
  • HTML阅读次数: 1516
  • 引用次数: 0
历史
  • 收稿日期:2020-07-26
  • 录用日期:2020-12-17
  • 在线发布日期: 2021-07-30
文章二维码