科微学术

微生物学通报

枯草芽孢杆菌表达和分泌异源蛋白的研究进展
作者:
基金项目:

国家自然科学基金(31470208)


Advances in heterologous protein expression and secretion of Bacillus subtilis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [67]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    枯草芽孢杆菌是一种广泛应用于基础研究和工业生产的重要模式菌株,具有无致病性、蛋白分泌能力强、遗传背景清晰等多种优势,是生产异源蛋白的理想宿主。目前已有诸多异源蛋白在枯草芽孢杆菌中实现表达和分泌,其中包括淀粉酶、β-半乳糖苷酶和蛋白酶等有价值的工业酶。本文从异源蛋白表达和分泌的关键步骤出发,总结了枯草芽孢杆菌生产异源蛋白的传统策略和最新技术。除此之外,分析了当前研究存在的瓶颈并对如何提高异源蛋白产量提出了新的建议和策略。

    Abstract:

    Bacillus subtilis is an important model strain widely used in basic research and industrial production, which has many advantages such as non-pathogenicity, the strong capability of secreting proteins, clear genetic background, so it is an ideal host for expressing and secreting heterologous proteins. At present, there are many heterologous proteins that have been expressed and secreted in Bacillus subtilis, which includes valuable proteins such as amylase, beta-mannanase and protease. Based on the key steps of the expression and secretion of heterologous protein, this paper summarizes the traditional strategies and the latest technologies for heterologous protein production in Bacillus subtilis. In addition, we analyze the difficulties in the present research and propose new suggestions and strategies for the improvement of the production of heterologous protein.

    参考文献
    [1] Dong HN, Zhang DW. Current development in genetic engineering strategies of Bacillus species[J]. Microbial Cell Factories, 2014, 13(1):63
    [2] Zweers JC, Barák I, Becher D, Driessen AJ, Hecker M, Kontinen VP, Saller MJ, Vavrová L, Van Dijl JM. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes[J]. Microbial Cell Factories, 2008, 7(1):10
    [3] Xu H, Jiang M, Li H, Lu DQ, Ouyang PK. Efficient production of poly(γ-glutamic acid) by newly isolated Bacillus subtilis NX-2[J]. Process Biochemistry, 2005, 40(2):519-523
    [4] Westbrook AW, Ren X, Moo-Young M, Chou CP. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis[J]. Biotechnology and Bioengineering, 2018, 115(1):216-231
    [5] Cheng J, Zhuang W, Li NN, Tang CL, Ying HJ. Efficient biosynthesis of D-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation[J]. Letters in Applied Microbiology, 2017, 64(1):73-78
    [6] Zhang X, Ban R, Liu L, Zhang R. Riboflavin production by a genetically modified Bacillus subtilis[J]. Microbiology China, 2017, 44(1):59-67(in Chinese)张续, 班睿, 刘露, 张然. 枯草芽孢杆菌基因修饰生产核黄素[J]. 微生物学通报, 2017, 44(1):59-67
    [7] Wang YH, Ma RJ, Liu L, He L, Ban R. Improvement of uridine production in Bacillus subtilis by metabolic engineering[J]. Biotechnology Letter, 2018, 40(1):151-155
    [8] Gu Y, Xu XH, Wu YK, Niu TF, Liu YF, Li JH, Du GC, Liu L. Advances and prospects of Bacillus subtilis cellular factories:from rational design to industrial applications[J]. Metabolic Engineering, 2018, 50:109-121
    [9] Chen JQ, Gai YM, Fu G, Zhou WJ, Zhang DW, Wen JP. Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein[J]. Biotechnology Letters, 2015, 37(4):899-906
    [10] Ma RJ, Wang YH, Liu L, Bai LL, Ban R. Production enhancement of the extracellular lipase LipA in Bacillus subtilis:effects of expression system and Sec pathway components[J]. Protein Expression and Purification, 2018, 142:81-87
    [11] Song YF, Fu G, Dong HN, Li JJ, Du YG, Zhang DW. High-efficiency secretion of β-mannanase in Bacillus subtilis through protein synthesis and secretion optimization[J]. Journal of Agricultural and Food Chemistry, 2017, 65(12):2540-2548
    [12] Westers L, Dijkstra DS, Westers H, Van Dijl JM, Quax WJ. Secretion of functional human interleukin-3 from Bacillus subtilis[J]. Journal of Biotechnology, 2006, 123(2):211-224
    [13] Zhou CY, Ye B, Cheng S, Zhao LZ, Liu YX, Jiang JD, Yan X. Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis[J]. Microbial Cell Factories, 2019, 18(1):111
    [14] Song YF, Nikoloff JM, Fu G, Chen JQ, Li QG, Xie NZ, Zheng P, Sun JB, Zhang DW. Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications[J]. PLoS One, 2016, 11(7):e0158447
    [15] Li FB, Liu L, Du Y, Ban R. Construction of recombinant Bacillus subtilis as catalyst for preparing D-p-hydroxyphenylglycine[J]. China Biotechnology, 2019, 39(3):75-86(in Chinese)李法彬, 刘露, 杜燕, 班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3):75-86
    [16] Kang HK, Jang JH, Shim HJ, Park JT, Kim YW, Park KH. Efficient constitutive expression of thermostable 4-α-glucanotransferase in Bacillus subtilis using dual promoters[J]. World Journal of Microbiology and Biotechnology, 2010, 26(10):1915-1918
    [17] Zhang K, Su LQ, Duan XG, Liu LN, Wu J. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system[J]. Microbial Cell Factories, 2017, 16(1):32
    [18] Guan CR, Cui WJ, Cheng JT, Liu R, Liu ZM, Zhou L, Zhou ZM. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis[J]. New Biotechnology, 2016, 33(3):372-379
    [19] Nadler F, Bracharz F, Kabisch J. CopySwitch-in vivo optimization of gene copy numbers for heterologous gene expression in Bacillus subtilis[J]. Frontiers in Bioengineering and Biotechnology, 2019, 6:207
    [20] Li DD, Fu G, Tu R, Jin ZX, Zhang DW. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components[J]. Microbial Cell Factories, 2019, 18(1):17
    [21] Phan TTP, Nguyen HD, Schumann W. Construction of a 5'-controllable stabilizing element (CoSE) for over-production of heterologous proteins at high levels in Bacillus subtilis[J]. Journal of Biotechnology, 2013, 168(1):32-39
    [22] Quesada-Ganuza A, Antelo-Varela M, Mouritzen JC, Bartel J, Becher D, Gjermansen M, Hallin PF, Appel KF, Kilstrup M, Rasmussen M, et al. Identification and optimization of PrsA in Bacillus subtilis for improved yield of amylase[J]. Microbial Cell Factories, 2019, 18(1):158
    [23] Lindholm A, Ellmén U, Tolonen-Martikainen M, Palva A. Heterologous protein secretion in Lactococcus lactis is enhanced by the Bacillus subtilis chaperone-like protein PrsA[J]. Applied microbiology and biotechnology, 2006, 73(4):904-914
    [24] Chen JQ, Fu G, Gai YM, Zheng P, Zhang DW, Wen JP. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis:identification of bottlenecks by systematic gene overexpression[J]. Microbial Cell Factories, 2015, 14(1):92
    [25] Kakeshita H, Kageyama Y, Endo K, Tohata M, Ara K, Ozaki K, Nakamura K. Secretion of biologically-active human interferon-β by Bacillus subtilis[J]. Biotechnology Letters, 2011, 33(9):1847-1852
    [26] Zhang C, Tao TT, Ying Q, Zhang DL, Lu FX, Bie XM, Lu ZX. Extracellular production of lipoxygenase from Anabaena sp. PCC 7120 in Bacillus subtilis and its effect on wheat protein[J]. Applied Microbiology and Biotechnology, 2012, 94(4):949-958
    [27] Yao DB, Su LQ, Li N, Wu J. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection[J]. Microbial Cell Factories, 2019, 18(1):69
    [28] Mulder KCL, Bandola J, Schumann W. Construction of an artificial SecYEG operon allowing high level secretion of α-amylase[J]. Protein Expression and Purification, 2013, 89(1):92-96
    [29] Bai LL, Ma RJ, Yang SM, Ban R. Effect of TatAdCd translocases overexpression on the secretion of lipase in Bacillus subtilis[J]. Microbiology China, 2016, 43(1):2-8(in Chinese)白雷雷, 马然静, 杨绍梅, 班睿. 过表达TatAdCd转位酶对枯草芽孢杆菌脂肪酶分泌的影响[J]. 微生物学通报, 2016, 43(1):2-8
    [30] Pummi T, Leskelä S, Wahlström E, Gerth U, Tjalsma H, Hecker M, Sarvas M, Kontinen VP. ClpXP protease regulates the signal peptide cleavage of secretory preproteins in Bacillus subtilis with a mechanism distinct from that of the Ecs ABC transporter[J]. Journal of Bacteriology, 2002, 184(4):1010-1018
    [31] Neef J, Bongiorni C, Goosens VJ, Schmidt B, Van Dijl JM. Intramembrane protease RasP boosts protein production in Bacillus[J]. Microbial Cell Factories, 2017, 16(1):57
    [32] Wu SC, Yeung JC, Duan YJ, Ye RQ, Szarka SJ, Habibi HR, Wong SL. Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis:effects of molecular chaperones and a wall-bound protease on antibody fragment production[J]. Applied and Environmental Microbiology, 2002, 68(7):3261-3269
    [33] Kodama T, Endo K, Sawada K, Ara K, Ozaki K, Kakeshita H, Yamane K, Sekiguchi J. Bacillus subtilis AprX involved in degradation of a heterologous protein during the late stationary growth phase[J]. Journal of Bioscience and Bioengineering, 2007, 104(2):135-143
    [34] Hyyryläinen HL, Vitikainen M, Thwaite J, Wu HY, Sarvas M, Harwood CR, Kontinen VP, Stephenson K. D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis[J]. Journal of Biological Chemistry, 2000, 275(35):26696-26703
    [35] Cao HJ, Van Heel AJ, Ahmed H, Mols M, Kuipers OP. Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed α-amylases[J]. Microbial Cell Factories, 2017, 16(1):56
    [36] Cao HJ, Villatoro-Hernandez J, Weme RDO, Frenzel E, Kuipers OP. Boosting heterologous protein production yield by adjusting global nitrogen and carbon metabolic regulatory networks in Bacillus subtilis[J]. Metabolic Engineering, 2018, 49:143-152
    [37] Toya Y, Hirasawa T, Morimoto T, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H. 13C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain[J]. Journal of Biotechnology, 2014, 179:42-49
    [38] Wang Y, Chen ZM, Zhao RL, Jin TT, Zhang XM, Chen XD. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis[J]. Microbial Cell Factories, 2014, 13(1):129
    [39] Cui WJ, Han LC, Suo FY, Liu ZM, Zhou L, Zhou ZM. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond[J]. World Journal of Microbiology and Biotechnology, 2018, 34(10):145
    [40] Xiong HT, Wei YT. Research progress of Bacillus subtilis expression system and its promoter regulatory elements[J]. Guangxi Sciences, 2018, 25(3):233-241(in Chinese)熊海涛, 韦宇拓. 枯草芽孢杆菌表达系统及其启动子的研究进展[J]. 广西科学, 2018, 25(3):233-241
    [41] Estacio W, Anna-Arriola SS, Adedipe M, Márquez-Magaña LM. Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis[J]. Journal of Bacteriology, 1998, 180(14):3548-3555
    [42] Zhang X, Xu ZY, Liu S, Qian K, Xu MJ, Yang TW, Xu JZ, Rao ZM. Improving the production of salt-tolerant glutaminase by integrating multiple copies of Mglu into the protease and 16S rDNA genes of Bacillus subtilis 168[J]. Molecules, 2019, 24(3):592
    [43] Lehnik-Habrink M, Lewis RJ, Mäder U, Stülke J. RNA degradation in Bacillus subtilis:an interplay of essential endo- and exoribonucleases[J]. Molecular Microbiology, 2012, 84(6):1005-1017
    [44] Song YF, Nikoloff JM, Zhang DW. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis[J]. Journal of Microbiology and Biotechnology, 2015, 25(7):963-977
    [45] Wong SL. Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins[J]. Current Opinion in Biotechnology, 1995, 6(5):517-522
    [46] Zhang DW, Kang Q. Development and prospect of protein expression and secretion systems in Bacillus subtilis[J]. Journal of Microbiology, 2019, 39(1):1-10(in Chinese)张大伟, 康倩. 枯草芽胞杆菌蛋白质表达分泌系统发展及展望[J]. 微生物学杂志, 2019, 39(1):1-10
    [47] Chatzi KE, Sardis MF, Tsirigotaki A, Koukaki M, Šoštarić N, Konijnenberg A, Sobott F, Kalodimos CG, Karamanou S. Preprotein mature domains contain translocase targeting signals that are essential for secretion[J]. Journal of Cell Biology, 2017, 216(5):1357-1369
    [48] Goosens VJ, Monteferrante CG, Van Dijl JM. The tat system of Gram-positive bacteria[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2014, 1843(8):1698-1706
    [49] Mogk A, Völker A, Engelmann S, Hecker M, Schumann W, Völker U. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon[J]. Journal of Bacteriology, 1998, 180(11):2895-2900
    [50] Kontinen VP, Sarvas M. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion[J]. Molecular Microbiology, 1993, 8(4):727-737
    [51] Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems[J]. Microbial Cell Factories, 2018, 17(1):52
    [52] Mu DD, Lu JJ, Qiao MQ, Kuiper OP, Zhu J, Li XJ, Yang PZ, Zhao YY, Luo SZ, Wu XF, et al. Heterologous signal peptides-directing secretion of Streptomyces mobaraensis transglutaminase by Bacillus subtilis[J]. Applied Microbiology and Biotechnology, 2018, 102(13):5533-5543
    [53] Kakeshita H, Kageyama Y, Ara K, Ozaki K, Nakamura K. Enhanced extracellular production of heterologous proteins in Bacillus subtilis by deleting the C-terminal region of the SecA secretory machinery[J]. Molecular Biotechnology, 2010, 46(3):250-257
    [54] Kouwen TRHM, Van Der Ploeg R, Antelmann H, Hecker M, Homuth G, Mäder U, Van Dijl JM. Overflow of a hyper-produced secretory protein from the Bacillus Sec pathway into the Tat pathway for protein secretion as revealed by proteogenomics[J]. Proteomics, 2009, 9(4):1018-1032
    [55] Bolhuis A, Sorokin A, Azevedo V, Ehrlich SD, Braun PG, De Jong A, Venema G, Bron S, Van Dijl MJ. Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I[J]. Molecular Microbiology, 1996, 22(4):605-618
    [56] Vitikainen M, Pummi T, Airaksinen U, Wahlstrom E, Wu HY, Sarvas M, Kontinen VP. Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of α-amylase in Bacillus subtilis[J]. Journal of Bacteriology, 2001, 183(6):1881-1890
    [57] Ploss TN, Reilman E, Monteferrante CG, Denham EL, Piersma S, Lingner A, Vehmaanperä J, Lorenz P, Van Dijl JM. Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions[J]. Microbial Cell Factories, 2016, 15(1):57
    [58] Yan SM, Wu G. Proteases HtrA and HtrB for α-amylase secreted from Bacillus subtilis in secretion stress[J]. Cell Stress and Chaperones, 2019, 24(3):493-502
    [59] Pohl S, Bhavsar G, Hulme J, Bloor AE, Misirli G, Leckenby MW, Radford DS, Smith W, Wipat A, Williamson ED, et al. Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins[J]. Proteomics, 2013, 13(22):3298-3308
    [60] Vitikainen M, Hyyryläinen HL, Kivimäki A, Kontinen VP, Sarvas M. Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation[J]. Journal of Applied Microbiology, 2005, 99(2):363-375
    [61] Neef J, Bongiorni C, Schmidt B, Goosens VJ, Van Dijl JM. Relative contributions of non-essential Sec pathway components and cell envelope-associated proteases to high-level enzyme secretion by Bacillus subtilis[J]. Microbial Cell Factories, 2020, 19(1):52
    [62] Chen YZ, Cai DB, He PH, Mo F, Zhang Q, Ma X, Chen SW. Enhanced production of heterologous proteins by Bacillus licheniformis with defective D-alanylation of lipoteichoic acid[J]. World Journal of Microbiology and Biotechnology, 2018, 34(9):135
    [63] Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, Van Dijl JM. Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis[J]. Journal of Proteome Research, 2013, 12(9):4101-4110
    [64] Wu XC, Lee W, Tran L, Wong SL. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases[J]. Journal of Bacteriology, 1991, 173(16):4952-4958
    [65] Zhao LZ, Ye B, Zhang Q, Cheng D, Zhou CY, Cheng S, Yan X. Construction of second generation protease-deficient hosts of Bacillus subtilis for secretion of foreign proteins[J]. Biotechnology and Bioengineering, 2019, 116(8):2052-2060
    [66] Watzlawick H, Altenbuchner J. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system[J]. AMB Express, 2019, 9(1):158
    [67] Wang H, Wang YX, Yang RJ. Recent progress in Bacillus subtilis spore-surface display:concept, progress, and future[J]. Applied Microbiology and Biotechnology, 2017, 101(3):933-949
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王杰,王晨,杜燕,徐晶玉,班睿. 枯草芽孢杆菌表达和分泌异源蛋白的研究进展[J]. 微生物学通报, 2021, 48(8): 2815-2826

复制
分享
文章指标
  • 点击次数:980
  • 下载次数: 1463
  • HTML阅读次数: 5217
  • 引用次数: 0
历史
  • 收稿日期:2020-09-05
  • 录用日期:2021-01-15
  • 在线发布日期: 2021-07-30
文章二维码