科微学术

微生物学通报

复合菌系GF-20低温降解玉米秸秆过程中群落演替与理化特性
作者:
基金项目:

国家自然科学基金(31760353,32060434);内蒙古自治区自然科学基金(2020MS03086,2018ZD02);国家重点研发计划(2017YFD0300804);财政部和农业农村部国家现在农业产业技术体系(CARS-02-63);农业部华北黄土高原地区作物栽培科学观测实验站(25204120)


Microbial community succession and straw degradation characteristics at low temperature in the composite microbial system GF-20
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [背景] 秸秆的生物降解具有高效率和环保等特点而备受关注。[目的] 明确复合菌系GF-20秸秆降解过程中发挥重要作用的功能微生物类群及其与降解特性的关系。[方法] 将复合菌系GF-20在10℃条件下恒温培养,定期取样测定其生长特性及秸秆分解特性,利用MiSeq高通量测序技术,分析不同降解时期复合菌系的群落结构变化规律。[结果] 复合菌系GF-20在接种后1 d内进入对数生长期,pH值迅速下降至6.98,总糖含量迅速降低至0.22 mg/mL;3 d后体系可溶性化学需氧量降低至4.77 g/L,氧化还原电位迅速降低至-303 mV,并高效分泌纤维素酶;培养15 d时玉米秸秆降解率为31.97%,木质素、纤维素和半纤维素降解率分别为32.30%、44.85%和43.84%。在玉米秸秆降解过程中,降解初期(2、5 d)的优势菌属为Cellvibrio (29.55%)、Chryseobacterium (7.35%)、Hydrogenophaga (3.86%)和Pseudomonas (3.42%);降解中期(7、10 d)的优势菌属为Azospirillum (9.92%)、Rhizobium (6.99%)、Nubsella (5.06%)和Stenotrophomonas (3.37%);降解后期(12、15 d)的优势菌属为Taibaiella (13.82%)、Pleomorphomonas (13.69%)、Flavobacterium (14.89%)、Cellulomonas (7.18%)、Devosia (7.36%)、Pedobacter (4.32%)和Sphingomonas (2.23%)。[结论] 明确了复合菌系GF-20在不同降解时期微生物群落结构演替规律以及秸秆降解特性动态变化,为复合菌系的合理化利用提供理论依据。

    Abstract:

    [Background] Straw biodegradation has been the focus of increasing amounts of attention because of its high degradation efficiency and environmental friendliness. [Objective] The key functional microbes in the process of straw degradation of composite microbial system GF-20 and their relationship with the characteristics of degradation were clarified. [Methods] GF-20 was cultured at 10℃, and the dynamics of growth and straw decomposition characteristics were determined, enabling the estimation of corn stalk decomposition by GF-20. Furthermore, the microbial community succession in different degradation periods was analyzed using MiSeq high-throughput sequencing technique. [Results] The composite microbial system GF-20 grew logarithmically, the pH value rapidly dropped to 6.98, and the total sugar content of the fermentation system quickly decreased to 0.22 mg/mL within 1 d after inoculation. The soluble chemical oxygen demand declined to 4.77 g/L after 3 d, and the oxidation-reduction potential rapidly reduced to -303 mV. The GF-20 efficiently secreted cellulose, and rate of degradation of corn stalk, lignin, cellulose and hemicellulose were 31.97%, 32.30%, 44.85% and 43.84%, respectively, after 15 days of fermentation at 10℃. The dominant genera included Cellvibrio (29.55%), Chryseobacterium (7.35%), Hydrogenophaga (3.86%) and Pseudomonas (3.42%) during the initial stage (2 d, 5 d) and the key functional microbes Azospirillum (9.92%), Rhizobium (6.99%), Nubsella (5.06%) and Stenotrophomonas (3.37%) during the mid-term stage (7 d, 10 d). The abundances of Taibaiella (13.82%), Pleomorphomonas (13.69%), Flavobacterium (14.89%), Cellulomonas (7.18%), Devosia (7.36%), Pedobacter (4.32%) and Sphingomonas (2.23%) increased significantly during the late stage (12 d, 15 d). [Conclusion] The dynamic changes in bacterial consortium structure and the characteristics of straw degradation during different periods of degradation were clarified and provide a theoretical basis for the rational utilization of composite microbial system GF-20.

    参考文献
    [1] Yang JH, Luo YL, Chen J, Jin M, Wang ZL, Li Y. Effects of main food yield under straw return in China:a meta-analysis[J]. Scientia Agricultura Sinica, 2020, 53(21):4415-4429(in Chinese)杨竣皓, 骆永丽, 陈金, 金敏, 王振林, 李勇. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析[J]. 中国农业科学, 2020, 53(21):4415-4429
    [2] Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry, 2003, 35(3):453-461
    [3] Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials[J]. Composites Science and Technology, 2007, 67(11/12):2535-2544
    [4] Jing RX, Zhang ZY, Jia P, Li Y. Isolation and identification of cellulose degrading strain Bacillus sp. D2 and its influencing factors on enzyme production[J]. Journal of Henan University:Natural Science, 2020, 50(6):675-683(in Chinese)景如贤, 张志宇, 贾培, 李祎. 纤维素降解菌株D2的分离鉴定及其产酶影响因素的研究[J]. 河南大学学报:自然科学版, 2020, 50(6):675-683
    [5] Jiang GF, Bao YZ, Yang TJ, Zheng HP, Mei XL, Wei Z, Xu YC, Shen QR. Screening of thermophilic cellulolytic bacteria and investigation of cellulase thermostability[J]. Journal of Agro-Environment Science, 2020, 39(10):2465-2472(in Chinese)江高飞, 暴彦灼, 杨天杰, 郑海平, 梅新兰, 韦中, 徐阳春, 沈其荣. 高温秸秆降解菌的筛选及其纤维素酶活性研究[J]. 农业环境科学学报, 2020, 39(10):2465-2472
    [6] Yin J, Liu YQ, Yu F, Cai JC, Liu TY. Screening and identification of a lignin-degrading bacterium and its application in composting[J]. Soil and Fertilizer Sciences in China, 2019(3):179-185(in Chinese)尹静, 刘悦秋, 于峰, 蔡建超, 刘天月. 一株木质素降解菌的筛选鉴定及其在堆肥中的应用[J]. 中国土壤与肥料, 2019(3):179-185
    [7] Su X, Wang JH, Zhang FZ, Liu JL, Gong GL, Ouyang XL, Wei D, Zhao HY, Song FQ, Yan L, et al. Microbial community succession associated with corn straw degradation in a bacterium consortium[J]. Acta Microbiologica Sinica, 2020, 60(12):2675-2689(in Chinese)苏鑫, 王敬红, 张方政, 刘嘉乐, 巩光禄, 欧阳晓伦, 魏丹, 赵洪颜, 宋福强, 晏磊, 等. 复合菌系降解玉米秸秆过程中群落演替与秸秆降解的关系[J]. 微生物学报, 2020, 60(12):2675-2689
    [8] Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability[J]. Applied Microbiology and Biotechnology, 2002, 59(4/5):529-534
    [9] Yang HY, Wu H, Wang XF, Cui ZJ, Li YH. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases[J]. Bioresource Technology, 2011, 102(3):3546-3550
    [10] Cui ZJ, Li MD, Piao Z, Huang ZY, Ishii M, Igarashi Y. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function[J]. Chinese Journal of Enviromental Science, 2002, 23(3):36-39(in Chinese)崔宗均, 李美丹, 朴哲, 黄志勇, Masaharu Ishii, Yasuo Igarashi. 一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J]. 环境科学, 2002, 23(3):36-39
    [11] Li J, Zhang HN, Zhao C, Zhang JY, Zhang Q, Zhang JY, Liu MK, Chen Q, Zhao K. Isolation and screening of cellulose decomposing microbe and the straw decomposing effect of complex microbial system[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4):689-696(in Chinese)李静, 张瀚能, 赵翀, 张金羽, 张琪, 张靖莹, 刘茂柯, 陈强, 赵珂. 高效纤维素降解菌分离筛选、复合菌系构建及秸秆降解效果分析[J]. 应用与环境生物学报, 2016, 22(4):689-696
    [12] Wei W, Song SL, Wu H, Zhang L, Guan YX, Li YS, Dai CC. Effects of compound microbial agent on corn straw degradation and soil ecological properties[J]. Chinese Journal of Soil Science, 2019, 50(2):323-332(in Chinese)魏蔚, 宋时丽, 吴昊, 张丽, 管永祥, 李运生, 戴传超. 复合菌剂对玉米秸秆的降解及土壤生态特性的影响[J]. 土壤通报, 2019, 50(2):323-332
    [13] Qinggeer, Gao JL, Yu XF, Zhang BL, Wang ZG, Borjigin N, Hu SP, Sun JY, Xie M, Wang Z. Screening of a microbial consortium with efficient corn stover degradation ability at low temperature[J]. Journal of Integrative Agriculture, 2016, 15(10):2369-2379
    [14] Yu XF, Borjigin Q, Gao JL, Wang ZG, Hu SP, Borjigin N, Wang Z, Sun JY, Han SC. Exploration of the key microbes and composition stability of microbial consortium GF-20 with efficiently decomposes corn stover at low temperatures[J]. Journal of Integrative Agriculture, 2019, 18(8):1893-1904
    [15] Arthur Thomas T. An automated procedure for the determination of soluble carbohydrates in herbage[J]. Journal of the Science of Food and Agriculture, 1977, 28(7):639-642
    [16] DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3):350-356
    [17] State Bureau of Environmental Protection of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China:Water quality-Determination of the chemical oxygen demand-Dichromate method. GB 11914-1989[S]. Beijing:Standards Press of China (in Chinese)国家环境保护局. 中华人民共和国国家标准:水质化学需氧量的测定重铬酸盐法GB 11914-1989[S]. 北京:中国标准出版社
    [18] Ghose TK. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2):257-268
    [19] Shi WH, Qin M, Chen F, Xia B. Supragingival microbial profiles of permanent and deciduous teeth in children with mixed dentition[J]. PLoS One, 2016, 11(1):e0146938
    [20] Hanif A, Yasmeen A, Rajoka MI. Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger[J]. Bioresource Technology, 2004, 94(3):311-319
    [21] McCarthy JK, Uzelac A, Davis DF, Eveleigh DE. Improved catalytic efficiency and active site modification of 1,4-β-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution[J]. Journal of Biological Chemistry, 2004, 279(12):11495-11502
    [22] Li PP, Wang XJ, Yuan XF, Wang XF, Cao YZ, Cui ZJ. Screening of a composite microbial system and its characteristics of wheat straw degradation[J]. Agricultural Sciences in China, 2011, 10(10):1586-1594
    [23] Feng YJ, Yu YL, Wang X, Qu YP, Li DM, He WH, Kim BH. Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure[J]. Bioresource Technology, 2011, 102(2):742-747
    [24] Qiao JT, Guo RB, Yuan XZ, Shi XS, Xu XH, Fan XL, Qiu YL. Phylogenetic analysis of methanogenic corn stalk degrading microbial communities[J]. Environmental Science, 2013, 34(4):1531-1539(in Chinese)乔江涛, 郭荣波, 袁宪正, 师晓爽, 许晓晖, 范晓蕾, 邱艳玲. 玉米秸秆厌氧降解复合菌系的微生物群落结构[J]. 环境科学, 2013, 34(4):1531-1539
    [25] Zhu N, Yang JS, Ji L, Liu JW, Yang Y, Yuan HL. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose[J]. Biotechnology for Biofuels, 2016, 9:243
    [26] Guo W, Li Y, Wang LZ, Wang JW, Xu Q, Yan TH, Xue B. Evaluation of composition and individual variability of rumen microbiota in yaks by 16S rRNA high-throughput sequencing technology[J]. Anaerobe, 2015, 34:74-79
    [27] Wu YR, He JZ. Characterization of a xylanase-producing Cellvibrio mixtus strain J3-8 and its genome analysis[J]. Scientific Reports, 2015, 5:10521
    [28] Nelson CE, Gardner JG. In-frame deletions allow functional characterization of complex cellulose degradation phenotypes in Cellvibrio japonicus[J]. Applied and Environmental Microbiology, 2015, 81(17):5968-5975
    [29] Bhise KK, Bhagwat PK, Dandge PB. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L.[J]. 3 Biotech, 2017, 7(2):105
    [30] Maki M, Iskhakova S, Zhang TZ, Qin WS. Bacterial consortia constructed for the decomposition of Agave biomass[J]. Bioengineered, 2014, 5(3):165-172
    [31] Kim MK, Pulla RK, Kim SY, Yi TH, Soung NK, Yang DC. Sanguibacter soli sp. nov., isolated from soil of a ginseng field[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(Pt 3):538-541
    [32] Yin LJ, Huang PS, Lin HH. Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5[J]. Journal of Agricultural and Food Chemistry, 2010, 58(17):9833-9837
    [33] Hassan YI, Lepp D, Zhou T. Genome assemblies of three soil-associated Devosia species:D. insulae, D. limi, and D. soli[J]. Genome Announcements, 2015, 3(3):e00514-e00515
    [34] Evdokimova EV, Gladkov GV, Kuzina NI, Ivanova EA, Kimeklis AK, Zverev AO, Kichko AA, Aksenova TS, Pinaev AG, Andronov EE. The difference between cellulolytic ‘culturomes’ and microbiomes inhabiting two contrasting soil types[J]. PLoS One, 2020, 15(11):e0242060
    [35] Xiao JJ, Li YL, Yang Q. Degradation of toluene in petroleum contaminated soil by Stenotrophomonas sp. MJ-1[J]. Environmental Engineering, 2018, 36(4):186-189(in Chinese)肖建军, 李亚龙, 杨琦. 寡养单胞菌降解石油污染土壤中的甲苯[J]. 环境工程, 2018, 36(4):186-189
    [36] Sun LN, Yang ED, Wei JC, Tang XY, Cao YY, Han GM. Caulobacter flavus sp. nov., a stalked bacterium isolated from rhizosphere soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt12):4374-4380
    [37] Das S, Jeong ST, Das S, Kim PJ. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy[J]. Frontiers in Microbiology, 2017, 8:1702
    [38] Da XY, Jiang F, Chang XL, Ren L, Qiu X, Kan WJ, Zhang YM, Deng SS, Fang CX, Peng F. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt11):3841-3846
    [39] Kupryashina MA, Petrov SV, Ponomareva EG, Nikitina VE. Ligninolytic activity of bacteria of the genera Azospirillum and Niveispirillum[J]. Microbiology, 2015, 84(6):791-795
    [40] Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 5):1633-1638
    [41] Laus MC, Van Brussel AA, Kijne JW. Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs[J]. Molecular Plant-Microbe Interactions:MPMI, 2005, 18(6):533-538
    [42] Kumar P, Maharjan A, Jun HB, Kim BS. Bioconversion of lignin and its derivatives into polyhydroxyalkanoates:challenges and opportunities[J]. Biotechnology and Applied Biochemistry, 2019, 66(2):153-162
    [43] Rahmanpour R, Bugg TDH. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5:oxidation of Mn(II) and polymeric lignin by Dyp1B[J]. Archives of Biochemistry and Biophysics, 2015, 574:93-98
    [44] Xing W, Li JL, Li P, Wang C, Cao YN, Li DS, Yang YF, Zhou JZ, Zuo JE. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65:262-270
    [45] Zhou LS, Li H, Zhang Y, Wang YF, Xu H. Analysis of sphingomonas genetic diversity in petroleum-contaminated soils by using PCR-DGGE technique[J]. Acta Pedologica Sinica, 2011, 48(4):804-812(in Chinese)周丽沙, 李慧, 张颖, 王亚菲, 徐慧. 石油污染土壤鞘氨醇单胞菌遗传多样性16S rDNA-PCR-DGGE分析[J]. 土壤学报, 2011, 48(4):804-812
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

青格尔,于晓芳,高聚林,王志刚,胡树平,孙继颖,屈佳伟,韩升才. 复合菌系GF-20低温降解玉米秸秆过程中群落演替与理化特性[J]. 微生物学通报, 2021, 48(8): 2681-2694

复制
分享
文章指标
  • 点击次数:418
  • 下载次数: 964
  • HTML阅读次数: 940
  • 引用次数: 0
历史
  • 收稿日期:2021-01-05
  • 录用日期:2021-03-19
  • 在线发布日期: 2021-07-30
文章二维码