科微学术

微生物学通报

红树林链霉菌ZFSM1-146中抗菌活性物质的发现
作者:
基金项目:

国家自然科学基金(31770049);深圳市科技计划(JCYJ20180305123659726)


Discovery of antibacterial compounds from a mangrove Streptomyces strain ZFSM1-146
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [背景] 红树林来源的放线菌蕴含着丰富的次级代谢产物资源,是挖掘小分子药物的重要来源。[目的] 对红树林放线菌天然产物进行研究,分离和鉴定其中的抗菌活性化合物。[方法] 采用稀释涂布平板法分离纯化红树林土壤中的放线菌,通过琼脂块法初筛和滤纸片法复筛获得具有抗菌活性的放线菌;基于16S rRNA基因序列分析和系统发育树构建确定目标放线菌种类;通过高效液相色谱法对目标放线菌的发酵产物进行分析,采用硅胶柱层析和高效液相色谱分离技术结合的活性追踪法纯化抗菌活性物质;经高分辨电喷雾电离质谱和核磁共振波谱技术鉴定抗菌活性物质的结构。[结果] 从红树林土壤中筛选到一株抗菌活性较强的放线菌ZFSM1-146,16S rRNA基因序列及其基因片段构建的系统发育树分析初步确定其为抗生链霉菌(Streptomyces antibioticus);菌株ZFSM1-146可产生抗菌活性化合物1-3,化合物1-3经结构鉴定分别为放线菌素X、X2和D。经培养基初步优化,抗菌活性最强的放线菌素X2的产量约达到原来的2倍。[结论] 从红树林土壤中筛选出一株可产生抗菌活性物质的抗生链霉菌ZFSM1-146,并鉴定出3个抗菌活性成分均为放线菌素类化合物,为后续进行放线菌素的产量优化和通过分子遗传手段进行结构改造提供了宝贵的菌种资源。

    Abstract:

    [Background] Secondary metabolites from mangrove actinomycetes are an important source for the discovery of small molecule drugs. [Objective] To isolate and identify the antibacterial secondary metabolites from mangrove actinomycetes. [Methods] The mangrove actinomycete strains were separated and purified using dilution plate method, and antibacterial activity of the strains were assayed by agar block and filter disk methods. The 16S rRNA gene sequence of an actinomycete strain was used for species analysis and construction of the phylogenetic tree. The fermentation broth of the actinomycete strain was analyzed by high performance liquid chromatography (HPLC), and the antibacterial compounds were purified by silica gel column chromatography and HPLC combining with activity-tracking method. The structures of the antibacterial compounds were elucidated by high resolution electrospray ionization mass spectroscopy (HR-ESI-MS) and nuclear magnetic resonance (NMR). [Results] An actinomycetes strain ZFSM1-146 with strong antibacterial activity was obtained from mangrove soil. Species and phylogenetic tree analysis showed that the strain belongs to Streptomyces antibioticus. Strain ZFSM1-146 could produce antibacterial compounds 1-3, which were identified as actinomycin XOβ, X2 and D, respectively. After preliminary medium optimization, the yield of actinomycin X2, which showed the strongest antibacterial activity among the 3 compounds, was almost twice as the original yield. [Conclusion] S. antibioticus ZFSM1-146 was obtained from mangrove soil and could produce antibacterial compound actinomycins. This study provided a valuable strain for improving the yield of actinomycins as well as producing new analogs through genetic manipulation.

    参考文献
    [1] Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014[J]. Journal of Natural Products, 2016, 79(3):629-661
    [2] Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F. Drug discovery from natural products[J]. Journal of Industrial Microbiology & Biotechnology, 2006, 33(7):523-531
    [3] Ma QQ, Ding WJ, Chen Z, Ma ZJ. Bisamides and rhamnosides from mangrove actinomycete Streptomyces sp. SZ-A15[J]. Natural Product Research, 2018, 32(7):761-766
    [4] Tan LTH, Chan KG, Pusparajah P, Yin WF, Khan TM, Lee LH, Goh BH. Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents[J]. BMC Microbiology, 2019, 19(1):1-16
    [5] Braddock AA, Theodorakis EA. Marine spirotetronates:biosynthetic edifices that inspire drug discovery[J]. Marine Drugs, 2019, 17(4):232
    [6] Zeng YX, Chen B, Zou Y, Zheng TL. Polar microorganisms, a potential source for new natural medicines:a review[J]. Acta Microbiologica Sinica, 2008, 48(5):695-700(in Chinese)曾胤新, 陈波, 邹扬, 郑天凌. 极地微生物——新天然药物的潜在来源[J]. 微生物学报, 2008, 48(5):695-700
    [7] Rateb ME, Ebel R, Jaspars M. Natural product diversity of actinobacteria in the Atacama Desert[J]. Antonie Van Leeuwenhoek, 2018, 111(8):1467-1477
    [8] Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK. Metagenomic analysis of hot springs in central India reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments[J]. Frontiers in Microbiology, 2016, 7:2123
    [9] Ye JJ, Zheng HY, Wu Y, Jiang LX, Chen JH, Huang SS, Huang DL. Diversity and antimicrobial activity of actinobacteria isolated from mangrove rhizosphere soil in the Maowei Sea of Guangxi[J]. Journal of Pathogen Biology, 2018, 13(11):1221-1226,1231(in Chinese)叶景静, 郑红芸, 吴越, 蒋莲秀, 陈建宏, 黄庶识, 黄大林. 广西茅尾海红树林植物根际土壤放线菌多样性及抗菌活性研究[J]. 中国病原生物学杂志, 2018, 13(11):1221-1226,1231
    [10] Palazzotto E, Tong YJ, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery[J]. Biotechnology Advances, 2019, 37(6):107366
    [11] Mahajan GB, Balachandran L. Antibacterial agents from actinomycetes:a review[J]. Frontiers in Bioscience:Elite Edition, 2012, 4:240-253
    [12] Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments:Microbiology leading to specialized metabolites[J]. Journal of Applied Microbiology, 2020, 128(3):630-657
    [13] Zhang M. Screening and identification of marine Actinomyces and study on of its antimicrobial active substances[D]. Shanghai:Master's Thesis of Shanghai Ocean University, 2017(in Chinese)张孟. 海洋抑菌放线菌的筛选、鉴定及其抑菌活性物质研究[D]. 上海:上海海洋大学硕士学位论文, 2017
    [14] Lin ZT, Ye ZJ, Zhuang LP, Xu L, Zhang G, Qiang H. Isolation and structure identification of the antimicrobial compounds from a marine actinomycetes strains[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(3):559-566(in Chinese)林真亭, 叶子坚, 庄玲萍, 许莉, 张岗, 强华. 一株海洋放线菌抗菌活性物质的分离与结构解析[J]. 江西农业大学学报, 2017, 39(3):559-566
    [15] Farris MH, Olson JB. Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers[J]. Letters in Applied Microbiology, 2007, 45(4):376-381
    [16] Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM. Antibacterial cannabinoids from Cannabis sativa:a structure-activity study[J]. Journal of Natural Products, 2008, 71(8):1427-1430
    [17] Wang DY, Wang C, Gui PY, Liu HS, Khalaf SMH, Elsayed EA, Wadaan MAM, Hozzein WN, Zhu WM. Identification, bioactivity, and productivity of actinomycins from the marine-derived Streptomyces heliomycini[J]. Frontiers in Microbiology, 2017, 8:1147
    [18] Song XQ, Jiang X, Sun JB, Zhang CY, Zhang Y, Lu LC, Ju JH. Antibacterial secondary metabolites produced by mangrove-derived actinomycete stremptmeces Costaricanus SCSIO ZS0073[J]. Natural Product Research and Development, 2017, 29(3):410-414(in Chinese)宋现芹, 蒋鑫, 孙建彬, 张春燕, 张云, 卢来春, 鞠建华. 红树林放线菌Stremptmeces costaricanus SCSIO ZS0073抗菌活性次级代谢产物的研究[J]. 天然产物研究与开发, 2017, 29(3):410-414
    [19] Matsui T, Tanaka J, Namihira T, Shinzato N. Antibiotics production by an actinomycete isolated from the termite gut[J]. Journal of Basic Microbiology, 2012, 52(6):731-735
    [20] Wang C, Liu PP, Wang Y, Sun KL, Jia HJ, Zhu WM. Optimization of fermentation conditions for production of actinomycin D by marine-derived Streptomyces parvulus OUCMDZ-2554[J]. Chinese Journal of Marine Drugs, 2014, 33(3):34-42(in Chinese)王聪, 刘培培, 王乂, 孙坤来, 贾海健, 朱伟明. 海洋来源放线菌Streptomyces parvulus OUCMDZ-2554产放线菌素D的发酵条件优化[J]. 中国海洋药物, 2014, 33(3):34-42
    [21] Cai WL, Wang XC, Elshahawi SI, Ponomareva LV, Liu XD, McErlean MR, Cui Z, Arlinghaus AL, Thorson JS, Van Lanen SG. Antibacterial and cytotoxic actinomycins Y6-Y9 and zp from Streptomyces sp. strain gö-GS12[J]. Journal of Natural Products, 2016, 79(10):2731-2739
    [22] Chen CX, Song FH, Wang Q, Abdel-Mageed WM, Guo H, Fu CZ, Hou WY, Dai HQ, Liu XT, Yang N, et al. A marine-derived Streptomyces sp. MS449 produces high yield of actinomycin X2 and actinomycin D with potent anti-tuberculosis activity[J]. Applied Microbiology and Biotechnology, 2012, 95(4):919-927
    [23] Waksman SA, Woodruff HB. Bacteriostatic and bactericidal substances produced by a soil Actinomyces[J]. Experimental Biology and Medicine, 1940, 45(2):609-614
    [24] Liu MC, Jia YX, Xie YC, Zhang CY, Ma JY, Sun CL, Ju JH. Identification of the actinomycin D biosynthetic pathway from marine-derived Streptomyces costaricanus SCSIO ZS0073[J]. Marine Drugs, 2019, 17(4):240-252
    [25] Yuan W, Jiao WH, Wang Y, Chen B, Ye BP. Progress on biosynthesis of actinomycins[J]. Amino Acids & Biotic Resources, 2014, 36(1):1-7(in Chinese)袁薇, 焦伟华, 王颖, 陈彪, 叶波平. 放线菌素生物合成研究进展[J]. 氨基酸和生物资源, 2014, 36(1):1-7
    [26] Zhang BZ, Wang KR, Wang ZZ, Li XL, Wang XL, Ni JM. Design, synthesis and in vitro antitumor activity of novel actinomycin D analogs[J]. Chemical Journal of Chinese Universities, 2010, 31(7):1346-1352(in Chinese)张邦治, 王凯荣, 王则周, 李欣檑, 王小丽, 倪京满. 放线菌素D新类似物的设计、合成与体外抗肿瘤活性[J]. 高等学校化学学报, 2010, 31(7):1346-1352
    [27] Ni JM, Wang R, Jia ZP, Pan XF, Hu XY. Studies on the synthesis and bioactivity of 5,5'-Val2-AMD and 2,2'-Phe2-AMD[J]. Chemical Journal of Chinese Universities, 1998, 19(2):243-245(in Chinese)倪京满, 王锐, 贾正平, 潘鑫复, 胡晓愚. 抗癌药物放线菌素D类似物的全合成及生物活性研究[J]. 高等学校化学学报, 1998, 19(2):243-245
    [28] Sun ZY, Zhang MM, Qin DH, Yang XP. Study on actinomycin X2, a secondary metabolite produced by actinomycete Z802031[J]. Journal of Capital Normal University (Natural Science Edition), 2011, 32(3):18-22(in Chinese)孙肇暘, 张明明, 秦德华, 杨秀萍. 放线菌Z802031次级代谢产物放线菌素X2的研究[J]. 首都师范大学学报:自然科学版, 2011, 32(3):18-22
    引证文献
引用本文

向晨晨,周珊珊,柴树茂,曹明明,王立岩,冯治洋. 红树林链霉菌ZFSM1-146中抗菌活性物质的发现[J]. 微生物学通报, 2021, 48(7): 2329-2340

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-28
  • 录用日期:2021-03-06
  • 在线发布日期: 2021-07-06
文章二维码