科微学术

微生物学通报

基因组尺度集成细胞网络模型研究进展
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家973计划项目(No. 2012CB725203,2011CBA00804);国家863计划项目(No. 2012AA022103);天津市应用基础及前沿技术研究计划项目(No. 12JCYBJC33000)


The progress of integrated genome-scale cellular networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    细胞网络研究是系统生物学的一个研究热点,通过结合计算机模型和实验技术,从系统角度分析复杂的生物系统,可以为生物实验提供指导和预测。近十年来,国内外许多研究团队致力于基因组规模代谢网络、基因调控网络和信号转导网络模型的构建和分析,并取得了一定成果。而不同类型网络的集成和分析是当前生物网络研究中一个新的方向,并带来了诸多新的挑战。在本文中,主要对基因组尺度集成细胞网络模型的研究进展,特别是对代谢网络和转录网络的集成进行了详细论述,着重于集成网络的构建和分析方法,最后对该领域研究前景进行了展望。

    Abstract:

    The study of cellular networks is one of the hot research topics in systems biology. Combining computational network models with experiment techniques, researchers can analyze complex biological systems from a systemic perspective, and provide new hypothesis and guidance for biological discovery. In the last ten years, many methods for the reconstruction and analysis of genome-scale metabolic networks, gene regulatory networks and signal transduction networks have been developed. The integration of these different types of biological networks is becoming a new research hotspot recently. The study of integrated network raises many new challenges. In this paper, we reviewed the methods for the reconstruction and analysis of integrated networks, with a particular focus on the integrative models of metabolic and transcriptional regulatory networks as most researches are on this type of integrated networks. We first gave a brief introduction of the different cellular networks, and then discussed the reconstruction methods and the application of integrated networks. In the end, the problems and future development directions were also discussed.

    参考文献
    相似文献
    引证文献
引用本文

武敏,马红武. 基因组尺度集成细胞网络模型研究进展[J]. 微生物学通报, 2014, 41(2): 367-375

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-01-26
  • 出版日期:
文章二维码