科微学术

微生物学通报

内生真菌发酵提取物和植物生长调节剂对大豆根际细菌多样性的影响
作者:
基金项目:

辽宁省科技攻关项目(No. 009208001)


Effects of endophytically fungal extracts and plant growth regulators on soybean rhizosphere bacterial diversity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究内生真菌发酵提取物和植物生长调节剂对大豆根际细菌多样性的影响, 采用PCR-DGGE 技术分析了其各处理中不同发育期的大豆根际细菌群落变化。结果发现发酵提取液和植物生长调节剂能增加部分优势菌群的数量, 但对根际细菌类群结构影响并不明显; 生育周期也是影响根际细菌数量的重要因素。另外割胶测序发现优势菌群主要是Proteobacteria (变形菌门)、Acidobacteria (酸杆菌纲)、Nitrospira (硝化螺旋菌属)、Bradyrhizobium (慢生根瘤菌属)等, 这些也都是大豆根际比较常见的细菌类群。

    Abstract:

    In order to study the effects of endophytically fungal extracts and plant growth regulators on soybean rhizosphere bacterial diversity, the dynamics of rhizosphere bacterial community in different developmental stages was studied based on PCR-DGGE approach. The results showed that they could increase some bacteria in populations; but the variation of rhizosphere bacterial diversity by fermentation extracts and plant growth regulator was no obvious, and the growth stages as an important factor that affects the rhizosphere bacteria. In addition, we found that the advantage bacteria mainly is Proteobacteria, Acidobacteria, Nitrospira, Bradyrhizobium, etc. These are the common bacterial species in the root of soybean.

    参考文献
    [1] 张集慧, 王春兰, 郭顺星, 等. 兰科药用植物的5 种内生真菌产生的植物激素[J]. 中国医学科学院学报, 1999, 21(6): 460?465.
    [2] 魏林. 哈茨木霉TZ-l 发酵产物对豌豆种子胚根组织的影响[J]. 湖南农业科学, 2004, 192(4): 23?24.
    [3] Martensson AM. Use of heterotrophic and cyanobacterial nitrogen fixation to study the impact of anthropogenic substances on soil biological Processes[J]. Bull Environ Contam Toxicol, 1993, 50(3): 466?473.
    [4] Li N, Wang HY. Effect of RRS on nitrogen transition and related bacteria in rhizosphere soil[J]. Northeast Agricultural University ( English Edition), 2007, 14(4): 333?336.
    [5] 鲍士旦. 土壤农化分析[M]. 中国农业出版社, 第3 版. 2005: 29.
    [6] Van Elsas JD, Dijkstra AF, Govaert JM, et al. Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots[J]. FEMS Microb Ecol, 1986(38): 151?160.
    [7] Zhou J, Bruns MA, Tiedje JM. DNA recovery from soil of diverse composition[J]. Applied and Environmental Microbiology, 1996(62): 316?322.
    [8] 刘丽, 段争虎, 汪思龙, 等. 不同发育阶段杉木人工林对土壤微生物群落结构的影响[J]. 生态学杂志, 2009, 28(12): 2417?2423.
    [9] Thompson JR, Marcelino LA, Polz MF. Heteroduplexes in mixed template amplifications: formation, consequence and elimination by ‘reconditioning PCR’ [J]. Nucleic Acids Res, 2002(30): 2083?2088.
    [10] Muyzer G, Brinkhoff T, Nubel U, et al. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology[J]. Molecular Microbial Ecology Manual, 1998, 3(4): 1?27.
    [11] Yang C, Crowley DE. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status[J]. Applied and Environmental microbiology, 2000(66): 345?351.
    [12] Schwieger F, Tebbe CC. A new approach to utilize PCR single strand conformation polymorphism for 16S rRNA Gene-based microbial community analysis[J]. Applied and Environmental Microbiology, 1998(64): 4870?4876.
    [13] Hu Y S, Wu K, Liu N, et al. Dynamics of microbial communities in bulk and developing cucumber rhizosphere soil[J]. Agricultural Sciences in China, 2004, 3(5): 376?383.
    [14] 刘冰, 翟瑞常, 郑殿峰, 等. 植物生长调节剂对大豆根建成期部分根系特性及同化物的影响[J]. 大豆科学, 2008, 28(5): 824?827.
    [15] 李海燕, 刘丽. 产生物活性物质植物内生菌的研究进展[J]. 天然产物研究与开发, 2004, 16(15): 482?485.
    [16] Garbeva P, Veen J AV, Elsas JDV. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annu Rev Phytopathol, 2004(42): 243?270.
    [17] Marschner P, Yang CH, Lieberei R, et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry, 2001(33): 1437?1445.
    [18] Smit E, Leeflang P, Gommans S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J]. Applied and Environmental Microbiology, 2001(67): 2284?2291.
    [19] Aislabie JN, Chhour K, Saul DJ, et al. Dominant bacteria in soils of Marble point and Wright valley, Victoria land, Antarctica[J]. Soil Biology and Biochemistry, 2006, 38(10): 3041?3056.
    [20] Hunter PJ, Petch GM, Calvo Bado LA, et al. Differences in microbial activity and microbial populations of peat associated with suppression of damping-off disease caused by Pythium sylvaticum[J]. Appl Environ Microbiol, 2006, 72(10): 6452?6460.
    [21] Bremner JM. Sources of nitrous oxide in soils[J]. Nutr Cycl Agroecosys, 1997(49): 7?16.
    [22] Ju Ding, Kai Shi, Yan Hong, et al. Microbial community responses associated with the development of Fusarium oxysporumf sp. cucumerinum after 24-epibrassinolide applicationsto shoots and roots in cucumber[J]. European Journal of Plant Pathology, 2009, 124(1): 141?150.
    [23] Zhanbei Liang, Rhae A. Drijber. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil[J]. Soil Biology &Biochemistry, 2008(40): 956?966.
    [24] 孙晓棠, 王燕, 龙良鲲, 等. 番茄根际微生物种群动态变化及多样性[J]. 微生物学通报, 2008, 35(11): 1744?1749.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李冰宇,肖军,王红,李旭,马晓颖,贾东贝,杨涛. 内生真菌发酵提取物和植物生长调节剂对大豆根际细菌多样性的影响[J]. 微生物学通报, 2011, 38(3): 362-369

复制
分享
文章指标
  • 点击次数:2309
  • 下载次数: 4050
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2010-10-27
  • 最后修改日期:2010-12-10
文章二维码