科微学术

微生物学通报

外膜蛋白CsgG影响禽致病性大肠杆菌生物被膜形成
作者:
基金项目:

国家自然科学基金(32302881, 32172856);上海市自然科学基金(22ZR1476100, 23ZR1476600);中国农业科学院科技创新工程(CAAS-ASTIP-2021-SHVRI-07)


The outer membrane protein CsgG influences biofilm formation of avian pathogenic Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | | | |
  • 文章评论
    摘要:

    【背景】禽致病性大肠杆菌(avian pathogenic Escherichia coli, APEC)能够引起禽类气囊炎、心包炎等症状,严重制约养禽业的健康发展。同时,APEC与人类肠道外致病性大肠杆菌(extraintestinal pathogenic Escherichia coli, ExPEC)具有相似的毒力因子,严重威胁公共卫生。APEC形成生物被膜可抵抗抗生素杀伤及逃避宿主免疫。因此,探究APEC生物被膜形成的关键基因和调控机制,对于防控APEC具有重要的理论和实践意义。【目的】探讨外膜蛋白CsgG在APEC生物被膜形成中的作用,揭示APEC生物被膜形成的分子机制,为禽大肠杆菌病的防治提供理论基础。【方法】利用Red同源重组技术构建的csgG基因缺失株ΔcsgG及其互补株CΔcsgG,分析了csgG对APEC生长、运动能力、膜通透性、胞外多糖(extracellular polysaccharides, EPS)产量及生物被膜形成能力的影响。【结果】csgG的缺失并不影响APEC的生长和细胞膜的通透性,但增强了APEC的运动性。csgG的缺失显著降低了APEC生物被膜形成能力,扫描电子显微镜观察发现缺失株生物被膜细菌组成由多层变为单层,细菌间黏附减少。激光扫描共聚焦显微镜观察发现csgG的缺失导致生物被膜结构松散,黏附的细菌数量减少,同时发现csgG缺失显著降低APEC的EPS产量。实时荧光定量PCR分析显示,csgG的缺失导致与生物被膜形成相关基因的转录水平显著降低。【结论】CsgG在APEC生物被膜形成过程中起着关键作用,严重影响生物被膜结构的完整性。

    Abstract:

    [Background] Avian pathogenic Escherichia coli (APEC) could cause inflammatory conditions such as avian airsacculitis and pericarditis, which seriously restricts the healthy development of the poultry industry. Meanwhile, APEC and human extraintestinal pathogenic Escherichia coli (ExPEC) have similar virulence factors, posing a serious threat to public health. Biofilm formation can enhance the antibiotic resistance of APEC and help it escape from the host immune system. Therefore, exploring the key genes and regulatory mechanisms of the biofilm formation of APEC are of great theoretical and practical significance for the prevention and control of APEC. [Objective] To elucidate the role of the outer membrane protein CsgG in the biofilm formation of APEC, reveal the molecular mechanism of its biofilm formation, and provide a theoretical basis for the prevention and control of avian diseases associated with APEC. [Methods] The csgG-deleted strain ΔcsgG and its complementary strain CΔcsgG were constructed by Red homologous recombination. The strains were then used to study the effects of csgG on the growth, motility, membrane permeability, extracellular polysaccharide (EPS) production, and biofilm formation of APEC. [Results] The deletion of csgG did not impact the growth or membrane permeability but enhanced the motility of APEC. The deletion of csgG significantly reduced the biofilm formation of APEC. Scanning electron microscopy revealed that the biofilm changed from multilayers to monolayers after the deletion of csgG, with reduced intercellular adhesion. Confocal laser microscope revealed that the deletion of csgG led to a loose structure of the biofilm and a decrease in the number of adherent bacteria. Furthermore, the deletion of csgG significantly reduced the EPS production of APEC. The RT-qPCR results showed that the deletion of csgG led to significant reductions in the transcript levels of genes related to biofilm formation. [Conclusion] CsgG is a pivotal factor in the biofilm formation of APEC, influencing the structural integrity of the biofilm.

    参考文献
    [1] MANGES AR. Escherichia coli and urinary tract infections: the role of poultry-meat[J]. Clinical Microbiology and Infection, 2016, 22(2): 122-129.
    [2] RODRIGUEZ-SIEK KE, GIDDINGS CW, DOETKOTT C, JOHNSON TJ, FAKHR MK, NOLAN LK. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis[J]. Microbiology, 2005, 151(Pt 6): 2097-2110.
    [3] RUSSO TA, JOHNSON JR. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC[J]. The Journal of Infectious Diseases, 2000, 181(5): 1753-1754.
    [4] BAUCHART P, GERMON P, BRÉE A, OSWALD E, HACKER J, DOBRINDT U. Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli: search for factors involved in host specificity or zoonotic potential[J]. Microbial Pathogenesis, 2010, 49(3): 105-115.
    [5] HUNG C, ZHOU YZ, PINKNER JS, DODSON KW, CROWLEY JR, HEUSER J, CHAPMAN MR, HADJIFRANGISKOU M, HENDERSON JP, HULTGREN SJ. Escherichia coli biofilms have an organized and complex extracellular matrix structure[J]. mBio, 2013, 4(5): e00645-13.
    [6] SANCHEZ-VIZUETE P, ORGAZ B, AYMERICH S, Le COQ D, BRIANDET R. Pathogens protection against the action of disinfectants in multispecies biofilms[J]. Frontiers in Microbiology, 2015, 6: 705.
    [7] SKYBERG JA, SIEK KE, DOETKOTT C, NOLAN LK. Biofilm formation by avian Escherichia coli in relation to media, source and phylogeny[J]. Journal of Applied Microbiology, 2007, 102(2): 548-554.
    [8] FILLOUX A, VALLET I. Biofilm: set-up and organization of a bacterial community[J]. Médecine Sciences, 2003, 19(1): 77-83.
    [9] COLLINSON SK, DOIG PC, DORAN JL, CLOUTHIER S, TRUST TJ, KAY WW. Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin[J]. Journal of Bacteriology, 1993, 175(1): 12-18.
    [10] DUEHOLM MS, ALBERTSEN M, OTZEN D, NIELSEN PH. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure[J]. PLoS One, 2012, 7(12): e51274.
    [11] REISNER A, KROGFELT KA, KLEIN BM, ZECHNER EL, MOLIN S. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors[J]. Journal of Bacteriology, 2006, 188(10): 3572-3581.
    [12] RODRIGUES SV, LAVINIKI V, BORGES KA, FURIAN TQ, MORAES HLS, NASCIMENTO VP, SALLE CTP. Biofilm formation by avian pathogenic Escherichia coli is not related to in vivo pathogenicity[J]. Current Microbiology, 2019, 76(2): 194-199.
    [13] OLSÉN A, JONSSON A, NORMARK S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli[J]. Nature, 1989, 338(6217): 652-655.
    [14] CHAPMAN MR, ROBINSON LS, PINKNER JS, ROTH R, HEUSER J, HAMMAR M, NORMARK S, HULTGREN SJ. Role of Escherichia coli curli operons in directing amyloid fiber formation[J]. Science, 2002, 295(5556): 851-855.
    [15] HAMMAR M, ARNQVIST A, BIAN Z, OLSÉN A, NORMARK S. Expression of two csg operons is required for production of fibronectin-and Congo red-binding curli polymers in Escherichia coli K-12[J]. Molecular Microbiology, 1995, 18(4): 661-670.
    [16] CAO BH, ZHAO Y, KOU YJ, NI DC, ZHANG XC, HUANG YH. Structure of the nonameric bacterial amyloid secretion channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): E5439-E5444.
    [17] GOYAL P, KRASTEVA PV, van GERVEN N, GUBELLINI F, van den BROECK I, TROUPIOTIS-TSAÏLAKI A, JONCKHEERE W, PÉHAU-ARNAUDET G, PINKNER JS, CHAPMAN MR, HULTGREN SJ, HOWORKA S, FRONZES R, REMAUT H. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG[J]. Nature, 2014, 516(7530): 250-253.
    [18] ZHANG MF, SHI HG, ZHANG XM, ZHANG XZ, HUANG YH. Cryo-EM structure of the nonameric CsgG-CsgF complex and its implications for controlling curli biogenesis in Enterobacteriaceae[J]. PLoS Biology, 2020, 18(6): e3000748.
    [19] HU JG, GU Y, LU HQ, RAHEEM MA, YU FH, NIU XP, ZUO JK, YIN HF, HUANG CQ, SONG XJ, TU J, ZHOU W, JIANG W, CHEN ZG, HAN XG, QI KZ. Identification of novel biofilm genes in avian pathogenic Escherichia coli by Tn5 transposon mutant library[J]. World Journal of Microbiology & Biotechnology, 2022, 38(8): 130.
    [20] JUNG JH, CHOI NY, LEE SY. Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions[J]. Food Microbiology, 2013, 34(1): 70-80.
    [21] DuBOIS M, GILLES KA, HAMILTON JK, REBERS PA, SMITH F. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356.
    [22] TANG H, ZHANG P, KIEFT TL, RYAN SJ, BAKER SM, WIESMANN WP, ROGELJ S. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria[J]. Acta Biomaterialia, 2010, 6(7): 2562-2571.
    [23] LIU Y, JIA YQ, YANG KN, TONG ZW, SHI JR, LI RC, XIAO X, REN WK, HARDELAND R, REITER RJ, WANG ZQ. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens[J]. Theranostics, 2020, 10(23): 10697-10711.
    [24] SOUSA C, TEIXEIRA P, OLIVEIRA R. The role of extracellular polymers on Staphylococcus epidermidis biofilm biomass and metabolic activity[J]. Journal of Basic Microbiology, 2009, 49(4): 363-370.
    [25] HU JG, LV XL, NIU XP, YU FH, ZUO JK, BAO YL, YIN HF, HUANG CQ, NAWAZ S, ZHOU W, JIANG W, CHEN ZG, TU J, QI KZ, HAN XG. Effect of nutritional and environmental conditions on biofilm formation of avian pathogenic Escherichia coli[J]. Journal of Applied Microbiology, 2022, 132(6): 4236-4251.
    [26] RUMBAUGH KP, SAUER K. Biofilm dispersion[J]. Nature Reviews Microbiology, 2020, 18(10): 571-586.
    [27] LI FY, CIMDINS A, ROHDE M, JÄNSCH L, KAEVER V, NIMTZ M, RÖMLING U. DncV synthesizes cyclic GMP-AMP and regulates biofilm formation and motility in Escherichia coli ECOR31[J]. mBio, 2019, 10(2): e02492-18.
    [28] ROBINSON LS, ASHMAN EM, HULTGREN SJ, CHAPMAN MR. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein[J]. Molecular Microbiology, 2006, 59(3): 870-881.
    [29] DUNSTAN RA, HAY ID, WILKSCH JJ, SCHITTENHELM RB, PURCELL AW, CLARK J, COSTIN A, RAMM G, STRUGNELL RA, LITHGOW T. Assembly of the secretion pores GspD, Wza and CsgG into bacterial outer membranes does not require the Omp85 proteins BamA or TamA[J]. Molecular Microbiology, 2015, 97(4): 616-629.
    [30] WANG HX, XU KW, WANG J, FENG C, CHEN YH, SHI JH, DING Y, DENG CX, LIU XW. Microplastic biofilm: An important microniche that may accelerate the spread of antibiotic resistance genes via natural transformation[J]. Journal of Hazardous Materials, 2023, 459: 132085.
    [31] LEPEK VC, D’ANTUONO AL, TOMATIS PE, UGALDE JE, GIAMBIAGI S, UGALDE RA. Analysis of Mesorhizobium loti glycogen operon: effect of phosphoglucomutase (pgm) and glycogen synthase (glgA) null mutants on nodulation of Lotus tenuis[J]. Molecular Plant-Microbe Interactions, 2002, 15(4): 368-375.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭浩恒,林子竹,胡剑刚,张贝贝,郭伟奇,王欣宇,王芷洋,祁晶晶,田明星,鲍衍清,李海花,王少辉. 外膜蛋白CsgG影响禽致病性大肠杆菌生物被膜形成[J]. 微生物学通报, 2025, 52(2): 811-821

复制
分享
文章指标
  • 点击次数:38
  • 下载次数: 60
  • HTML阅读次数: 69
  • 引用次数: 0
历史
  • 收稿日期:2024-11-12
  • 录用日期:2024-12-28
  • 在线发布日期: 2025-02-22
  • 出版日期: 2025-02-20
文章二维码