科微学术

微生物学通报

牛支原体环介导等温扩增技术结合横向流动试纸条检测方法的建立
作者:
基金项目:

国家重点研发计划(2022YFD1800703);国家自然科学基金(32002245,U1803236)


Loop-mediated isothermal amplification (LAMP) combined with lateral flow dipstick (LFD) for detection of Mycoplasma bovis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】牛支原体(Mycoplasma bovis)是引起牛乳房炎、关节炎及呼吸道疾病等的重要病原体之一,严重危害养牛业的健康发展。【目的】建立一种便捷、快速、灵敏和特异的环介导等温扩增(loop-mediated isothermal amplification, LAMP)技术结合横向流动试纸条(lateral flow dipstick, LFD)方法用于牛支原体的检测。【方法】对牛支原体P48特异性基因序列进行对比,选择保守性区域。运用Primer Explorer V5在线软件设计引物,并通过荧光染料法与以oppD/FoppDurvC为靶基因所设计的LAMP引物进行比较。对筛选出的最佳P48引物组的内引物(FIP/BIP)用生物素和6-羧基荧光素标记;利用单一控制变量法对反应温度、时间与引物浓度比进行优化;将LAMP检测方法与LFD相结合。最后评价该方法的敏感性、特异性、重复性及临床应用效果。【结果】P48 LAMP引物组荧光信号更强,Ct值较小,扩增效率较高,优于已报道的LAMP引物组;当反应温度为60 ℃、引物(F3/B3:FIP/BIP)浓度比为1:4、反应时间为40 min时最佳;最低检测浓度为17.28 fg/µL,比行业标准PCR检测方法灵敏1 000倍;与多杀性巴氏杆菌、牛疱疹病毒等9种引起牛呼吸道疾病相关病原体均无交叉反应;批间与批内试验均一致;运用该方法对39份临床鼻拭子的检出率为28.21%,高于行业标准的PCR法(检出率23.07%)。【结论】成功建立一种敏感、特异以及便于基层使用的牛支原体LAMP-LFD检测方法,为防控牛支原体病提供了技术支持。

    Abstract:

    [Background]Mycoplasma bovis is one of the major pathogens causing bovine mastitis, arthritis, and respiratory diseases, seriously endangering the healthy development of the cattle industry. [Objective] To establish a convenient, rapid, sensitive, and specific method based on loop-mediated isothermal amplification (LAMP) combined with lateral flow dipstick (LFD) for the detection of M.bovis. [Methods] The conserved region was selected by comparison of the P48 specific sequence of M.bovis and used to design primers by Primer Explorer V5 online. The designed primers were compared with the LAMP primers designed with oppD/F,oppD, and urvC as target genes by the fluorescent dye method. The optimal internal primers (FIP/BIP) designed based on P48 were labeled with biotin and 6-carboxyfluorescein, respectively. The reaction temperature, time, and primer concentration ratio were optimized by the single factor method. LAMP was combined with LFD for the detection of M.bovis. Finally, the sensitivity, specificity, repeatability, and clinical application effect of the established method were evaluated. [Results] The LAMP primers designed based on P48 had stronger fluorescence signal, lower Ct value, and higher amplification efficiency, outperforming the reported LAMP primers. The reaction conditions were optimized as 60 ℃, primer concentration ratio (F3/B3:FIP/BIP) of 1:4, and 40 min. The lower limit of detection of the established method was 17.28 fg/μL, which was 1 000 times lower than that of the PCR method, the standard method in the industry. There was no cross-reaction with 9 pathogens causing bovine respiratory diseases, such as Pasteurella multocida and bovine herpes virus (BHV). The results of inter-batch and intra-batch tests were consistent. The detection rate of 39 clinical nasal swabs by the established method was 28.21%, which was higher than that (23.07%) of the PCR method. [Conclusion] A sensitive, specific, and easy-to-use LAMP-LFD method for detecting M.bovis was successfully established, which provided technical support for the prevention and control of M.bovis.

    参考文献
    [1] GELGIE AE, DESAI SE, GELALCHA BD, DEGO OK. Mycoplasma bovis mastitis in dairy cattle[J]. Frontiers in Veterinary Science, 2024, 11: 1322267.
    [2] 李月, 朱来萍, 陶松, 詹建举, 余桃樱, 岩锐, 郑碧妞, 高林, 谢佳芮, 王生奎, 杨仕标, 姚俊. 牛腺病毒7型、牛支原体和细菌混合感染致外购肉牛呼吸系统疾病的确诊[J]. 中国兽医杂志, 2021, 57(9): 71-78. LI Y, ZHU LP, TAO S, ZHAN JJ, YU TY, YAN R, ZHENG BN, GAO L, XIE JR, WANG SK, YANG SB, YAO J. Diagnosis of respiratory diseases in outsourced beef cattle due to mixed infection of bovine adenovirus type 7, Mycoplasma bovis and bacteria[J]. Chinese Journal of Veterinary Medicine, 2021, 57(9): 71-78(in Chinese).
    [3] DAS D, LIN CW, CHUANG HS. LAMP-based point-of-care biosensors for rapid pathogen detection[J]. Biosensors, 2022, 12(12): 1068.
    [4] LI YL, LIN F, SUN LH, HUANG AX, CHEN JM, HAO GJ, YUAN XM, ZHANG HQ, SU SQ. Detection of cyprinid herpesvirus 2 by loop-mediated isothermal amplification in combination with a lateral flow dipstick[J]. Molecular and Cellular Probes, 2020, 50: 101507.
    [5] MU JM, LI Q, YAN X, MAO XW, SHI YQ, QIN Y, LIU CX, WANG WL. Detection of Brucella S2 vaccine strain by a loop-mediated isothermal amplification (LAMP) method[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 1023243.
    [6] 郑如雯, 黄涛, 吴道义, 禹光美, 李芳芳, 隋鑫, 闵婷玉. 牛病毒性腹泻病毒LAMP-LFD检测方法的建立及初步应用[J]. 畜牧兽医学报, 2023, 54(11): 4745-4753. ZHENG RW, HUANG T, WU DY, YU GM, LI FF, SUI X, MIN TY. Establishment and preliminary application of LAMP-LFD detection method for bovine viral diarrhea virus[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4745-4753(in Chinese).
    [7] ARNUPHAPPRASERT A, NUGRAHENI YR, AUNG A, ASADA M, KAEWTHAMASORN M. Detection of Babesia bovis using loop-mediated isothermal amplification (LAMP) with improved thermostability, sensitivity and alternative visualization methods[J]. Scientific Reports, 2023, 13(1): 1838.
    [8] LI RW, WANG JF, SUN XX, LIU LB, WANG JC, YUAN WZ. Direct and rapid detection of Mycoplasma bovis in bovine milk samples by recombinase polymerase amplification assays[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 639083.
    [9] MAYA-RODRÍGUEZ LM, CARRILLO-CASAS EM, ROJAS-TREJO V, TRIGO-TAVERA F, MIRANDA- MORALES RE. Prevalence of three Mycoplasma sp. by multiplex PCR in cattle with and without respiratory disease in central Mexico[J]. Tropical Animal Health and Production, 2022, 54(6): 394.
    [10] BECKER CAM, AMBROSET C, HULEUX A, VIALATTE A, COLIN A, TRICOT A, ARCANGIOLI MA, TARDY F. Monitoring Mycoplasma bovis diversity and antimicrobial susceptibility in calf feedlots undergoing a respiratory disease outbreak[J]. Pathogens, 2020, 9(7): 593.
    [11] ROBINO P, ALBERTI A, PITTAU M, CHESSA B, MICILETTA M, NEBBIA P, Le GRAND D, ROSATI S. Genetic and antigenic characterization of the surface lipoprotein P48 of Mycoplasma bovis[J]. Veterinary Microbiology, 2005, 109(3/4): 201-209.
    [12] 包世俊, 胡国明, 张阳阳, 邢小勇, 温峰琴, 武小椿. 牛支原体肺炎PCR诊断方法的建立及初步应用[J]. 中国兽医科学, 2020, 50(5): 550-555. BAO SJ, HU GM, ZHANG YY, XING XY, WEN FQ, WU XC. Establishment and preliminary application of PCR diagnostic method for Mycoplasma bovis pneumonia[J]. Chinese Veterinary Science, 2020, 50(5): 550-555(in Chinese).
    [13] HIGA Y, UEMURA R, YAMAZAKI W, GOTO S, GOTO Y, SUEYOSHI M. An improved loop-mediated isothermal amplification assay for the detection of Mycoplasma bovis[J]. The Journal of Veterinary Medical Science, 2016, 78(8): 1343-1346.
    [14] APPELT S, ALY SS, TONOOKA K, GLENN K, XUE ZY, LEHENBAUER TW, MARCO ML. Development and comparison of loop-mediated isothermal amplification and quantitative polymerase chain reaction assays for the detection of Mycoplasma bovis in milk[J]. Journal of Dairy Science, 2019, 102(3): 1985-1996.
    [15] ASHRAF A, IMRAN M, YAQUB T, TAYYAB M, SHEHZAD W, MINGALA CN, CHANG YF. Development and validation of a loop-mediated isothermal amplification assay for the detection of Mycoplasma bovis in mastitic milk[J]. Folia Microbiologica, 2018, 63(3): 373-380.
    [16] 农业农村部. 牛支原体PCR检测方法NY/T 3234—2018[S]. 20180901. Ministry of Agriculture and Rural Affairs. Mycoplasma bovis PCR detection method NY/T 3234—2018[S]. 20180901(in Chinese).
    [17] KUDIRKIENE E, AAGAARD AK, SCHMIDT LMB, PANSRI P, KROGH KM, OLSEN JE. Occurrence of major and minor pathogens in calves diagnosed with bovine respiratory disease[J]. Veterinary Microbiology, 2021, 259: 109135.
    [18] DUDEK K, NICHOLAS RAJ, SZACAWA E, BEDNAREK D. Mycoplasma bovis infections-occurrence, diagnosis and control[J]. Pathogens, 2020, 9(8): 640.
    [19] NIU JQ, LI K, PAN HC, GAO X, LI JK, WANG DJ, YAN MS, XU YF, SIZHU SL. Epidemiological survey of Mycoplasma bovis in yaks on the Qinghai Tibetan Plateau, China[J]. BioMed Research International, 2021, 2021: 6646664.
    [20] LIU Y, XU SY, LI MY, ZHOU M, HUO WL, GAO J, LIU G, KASTELIC JP, HAN B. Molecular characteristics and antibiotic susceptibility profiles of Mycoplasma bovis associated with mastitis on dairy farms in China[J]. Preventive Veterinary Medicine, 2020, 182: 105106.
    [21] AEBI M, van den BORNE BHP, RAEMY A, STEINER A, PILO P, BODMER M. Mycoplasma bovis infections in Swiss dairy cattle: a clinical investigation[J]. Acta Veterinaria Scandinavica, 2015, 57(1): 10.
    [22] FAN Q, XIE ZX, XIE ZQ, XIE LJ, HUANG JL, ZHANG YF, ZENG TT, ZHANG MX, WAN S, LUO SS, LIU JB, DENG XW. Development of duplex fluorescence-based loop-mediated isothermal amplification assay for detection of Mycoplasma bovis and bovine herpes virus 1[J]. Journal of Virological Methods, 2018, 261: 132-138.
    [23] HASHEM YM, MOUSA WS, ABDEEN EE, ABDELKHALEK HM, NOORUZZAMAN M, EL-ASKARY A, ISMAIL KA, MEGAHED AM, ABDEEN A, SOLIMAN EA, WARETH G. Prevalence and molecular characterization of Mycoplasma species, Pasteurella multocida, and Staphylococcus aureus isolated from calves with respiratory manifestations[J]. Animals, 2022, 12(3): 312.
    [24] LI YM, FAN PH, ZHOU SS, ZHANG L. Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens[J]. Microbial Pathogenesis, 2017, 107: 54-61.
    [25] JAROENRAM W, KAMPEERA J, ARUNRUT N, SIRITHAMMAJAK S, JAITRONG S, BOONNAK K, KHUMWAN P, PRAMMANANAN T, CHAIPRASERT A, KIATPATHOMCHAI W. Ultrasensitive detection of Mycobacterium tuberculosis by a rapid and specific probe-triggered one-step, simultaneous DNA hybridization and isothermal amplification combined with a lateral flow dipstick[J]. Scientific Reports, 2020, 10(1): 16976.
    [26] OKELLA H, TONOOKA K, OKELLO E. A systematic review of the recent techniques commonly used in the diagnosis of Mycoplasma bovis in dairy cattle[J]. Pathogens, 2023, 12(9): 1178.
    [27] DUDEK K, SZACAWA E, NICHOLAS RAJ. Recent developments in vaccines for bovine mycoplasmoses caused by Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides[J]. Vaccines, 2021, 9(6): 549.
    [28] 侯轩, 付萍, 张海燕, 张跃伟, 吴文学. 牛支原体的环介导等温扩增快速检测技术研究[J]. 农业生物技术学报, 2012, 20(2): 218-224. HOU X, FU P, ZHANG HY, ZHANG YW, WU WX. Development of loop-mediated isothermal amplification for rapid detection of Mycoplasma bovis[J]. Journal of Agricultural Biotechnology, 2012, 20(2): 218-224(in Chinese).
    [29] 范晴, 谢芝勋, 谢志勤, 谢丽基, 黄娇玲, 张艳芳, 曾婷婷, 王盛, 罗思思, 邓显文, 刘加波. 可视化牛支原体和传染性鼻气管炎二重荧光LAMP诊断方法的建立[J]. 基因组学与应用生物学, 2021, 40(1): 448-456. FAN Q, XIE ZX, XIE ZQ, XIE LJ, HUANG JL, ZHANG YF, ZENG TT, WANG S, LUO SS, DENG XW, LIU JB. Establishment of a visual duplex fluorescence-based LAMP method for the diagnosis of Mycoplasma bovis and infectious rhinotracheitis[J]. Genomics and Applied Biology, 2021, 40(1): 448-456(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王雅茜,胡云皓,王豪杰,岳怀宁,辛凌翔,潘瑶,刘燕,王震,陈创夫,朱良全. 牛支原体环介导等温扩增技术结合横向流动试纸条检测方法的建立[J]. 微生物学通报, 2024, 51(12): 5229-5239

复制
分享
文章指标
  • 点击次数:61
  • 下载次数: 91
  • HTML阅读次数: 96
  • 引用次数: 0
历史
  • 收稿日期:2024-05-03
  • 录用日期:2024-06-01
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码