科微学术

微生物学通报

β-葡萄糖苷酶Bgl2A:V224D稳定性的理性改造及其应用
作者:
  • 洪登望

    洪登望

    安徽大学生命科学学院, 安徽 合肥 230601;生物催化与现代生物制造安徽省重点实验室, 安徽合肥 230601;安徽省微生物与生物催化工程技术研究中心, 安徽合肥 230601
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 董庆莲

    董庆莲

    安徽大学生命科学学院, 安徽 合肥 230601;生物催化与现代生物制造安徽省重点实验室, 安徽合肥 230601;安徽省微生物与生物催化工程技术研究中心, 安徽合肥 230601
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 房伟

    房伟

    安徽大学生命科学学院, 安徽 合肥 230601;生物催化与现代生物制造安徽省重点实验室, 安徽合肥 230601;安徽省微生物与生物催化工程技术研究中心, 安徽合肥 230601;酶法体外诊断技术安徽省联合共建学科重点实验室, 安徽合肥 230000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张学成

    张学成

    安徽大学生命科学学院, 安徽 合肥 230601;生物催化与现代生物制造安徽省重点实验室, 安徽合肥 230601;安徽省微生物与生物催化工程技术研究中心, 安徽合肥 230601;酶法体外诊断技术安徽省联合共建学科重点实验室, 安徽合肥 230000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 肖亚中

    肖亚中

    安徽大学生命科学学院, 安徽 合肥 230601;生物催化与现代生物制造安徽省重点实验室, 安徽合肥 230601;安徽省微生物与生物催化工程技术研究中心, 安徽合肥 230601;酶法体外诊断技术安徽省联合共建学科重点实验室, 安徽合肥 230000
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

安徽省科技重大专项(202003a06020015)


Rational engineering and application of the β-glucosidase Bgl2A:V224D with high stability
Author:
  • HONG Dengwang

    HONG Dengwang

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DONG Qinglian

    DONG Qinglian

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FANG Wei

    FANG Wei

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China;Key Laboratory of Enzymatic In Vitro Diagnostic Technology of Anhui Province, Hefei 230000, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xuecheng

    ZHANG Xuecheng

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China;Key Laboratory of Enzymatic In Vitro Diagnostic Technology of Anhui Province, Hefei 230000, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIAO Yazhong

    XIAO Yazhong

    School of Life Sciences, Anhui University, Hefei 230601, Anhui, China;Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China;Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei 230601, Anhui, China;Key Laboratory of Enzymatic In Vitro Diagnostic Technology of Anhui Province, Hefei 230000, Anhui, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    【背景】β-葡萄糖苷酶(EC 3.2.1.21)在食品、医药领域具有重要的应用价值。海洋微生物来源的β-葡萄糖苷酶Bgl2A:V224D在大豆黄浆水精深加工中有较好的应用潜能,但其较低的稳定性和乙醇耐受性限制了其实际应用。【目的】提升Bgl2A:V224D的应用潜能,对其进行计算辅助的理性设计改造,提升其在应用环境中的稳定性和有机溶剂耐受性。【方法】综合采用3种计算方法设计构建Bgl2A:V224D突变体,利用序列共进化和保守性分析确定候选突变体,再通过湿法实验检测筛选目标突变体。获得稳定性提升的突变体后,通过组合突变进一步提升突变体的稳定性,并对突变体在大豆黄浆水精深加工中转化大豆异黄酮的应用潜能进行评估。【结果】获得多个稳定性提升且酶活维持或提升的单点突变体和组合突变体,其中S360K/E408Y稳定性最高,其在35 ℃、pH 6.5条件下的半衰期提升至出发酶的6.7倍左右。该突变体对乙醇的耐受性也比出发酶更高:前者在35 ℃、20%乙醇条件下孵育20 min,酶活剩余35%左右;而后者在相同条件下孵育10 min,酶活降至5%左右。将S360K/E408Y应用于水解大豆异黄酮制备苷元,其水解效率比出发酶Bgl2A:V224D显著增加,在相同条件下前者可水解的底物量是后者的2倍;用于大豆黄浆水精深加工,转化相同体积黄浆水中的大豆异黄酮,突变体S360K/E408Y所需酶量比出发酶减少1/3左右。【结论】利用提升稳定性的改造方法提升酶对有机溶剂的耐受性的策略适用于β-葡萄糖苷酶,通过这一策略可提升β-葡萄糖苷酶在多领域的应用潜力。

    Abstract:

    [Background] β-glucosidase (EC 3.2.1.21) has important application values in food and medicine industries. Bgl2A:V224D, a mutant of a marine microorganism-derived β-glucosidase, is potent in the conversion of soybean isoflavones in the deep processing of soybean yellow slurry water. However, the low stability and low ethanol tolerance limit the application of Bgl2A:V224D. [Objective] To enhance the application potential of Bgl2A:V224D, we adopted a computation-assisted rational design to improve the stability and organic solvent tolerance of this enzyme in the application environment. [Methods] We employed three complementary computational methods to design stable mutants of Bgl2A:V224D by seeking overlapping mutations. Then, sequence coevolution and conservation analyses were performed to determine candidate mutants. Finally, the target mutant enzymes were selected by experimental assays. After the stable mutant enzymes were identified, their stability was further enhanced by combinational mutation. Finally, the application performance of the mutant enzymes for the conversion of soybean isoflavones in the deep processing of soybean yellow slurry water was evaluated. [Results] Several single-point and multi-point mutants with improved stability and maintained or increased enzyme activity were obtained, among which S360K/E408Y had the highest stability, with the half-life at 35 ℃ and pH 6.5 about 6.7 times that of the starting enzyme. Moreover, S360K/E408Y was more tolerant to ethanol than the starting enzyme. The former had the relative activity of about 35% after 20 min of incubation with 20% ethanol at 35 ℃, while the latter had the relative activity of only about 5% after 10 min of incubation under the same conditions. S360K/E408Y was then applied to hydrolyze soybean isoflavones, and its efficiency was significantly increased compared with that of the starting enzyme Bgl2A:V224D. Specifically, the amount of substrate that could be hydrolyzed by the former enzyme was two times that of the latter enzyme under the same conditions. The amount of S360K/E408Y required for converting soybean isoflavones in the deep processing of soybean yellow slurry water was about 1/3 less than that of the starting enzyme. [Conclusion] The stability-enhancing engineering strategy for improving the enzyme tolerance to organic solvents is applicable to β-glucosidases, and the application potential of β-glucosidases in various fields can be enhanced by this strategy.

    参考文献
    [1] ZHOU W, GUAN ZB, CHEN Y, ZHANG F, CAI YJ, XU CW, CHEN XS, LIAO XR. Production of spore laccase from Bacillus pumilus W3 and its application in dye decolorization after immobilization[J]. Water Science and Technology, 2017, 76(1/2): 147-154.
    [2] 张会会. 扩展青霉脂肪酶的定向进化及其稳定性的提高[D]. 福州: 福建师范大学硕士学位论文, 2015. ZHANG HH. Directional evolution of lipase from Penicillium expansum and improvement of its stability[D]. Fuzhou: Master’s Thesis of Fujian Normal University, 2015(in Chinese).
    [3] CAO LC, LI SF, HUANG X, QIN ZM, KONG W, XIE W, LIU YH. Enhancing the thermostability of highly active and glucose-tolerant β-glucosidase Ks5A7 by directed evolution for good performance of three properties[J]. Journal of Agricultural and Food Chemistry, 2018, 66(50): 13228-13235.
    [4] SINHA SK, GOSWAMI S, DAS S, DATTA S. Exploiting non-conserved residues to improve activity and stability of Halothermothrix orenii β-glucosidase[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1455-1463.
    [5] ARNOLD FH. Innovation by evolution: bringing new chemistry to life (Nobel lecture)[J]. Angewandte Chemie International Edition, 2019, 58(41): 14420-14426.
    [6] GRIBENKO AV, PATEL MM, LIU JJ, McCALLUM SA, WANG CY, MAKHATADZE GI. Rational stabilization of enzymes by computational redesign of surface charge-charge interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(8): 2601-2606.
    [7] YANG M, YANG SX, LIU ZM, LI NN, LI L, MOU HJ. Rational design of alginate lyase from Microbulbifer sp. Q7 to improve thermal stability[J]. Marine Drugs, 2019, 17(6): 378.
    [8] SHOULDERS MD, SATYSHUR KA, FOREST KT, RAINES RT. Stereoelectronic and steric effects in side chains preorganize a protein main chain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 559-564.
    [9] CUI HY, ELTOUKHY L, ZHANG LL, MARKEL U, JAEGER KE, DAVARI MD, SCHWANEBERG U. Less unfavorable salt bridges on the enzyme surface result in more organic cosolvent resistance[J]. Angewandte Chemie International Edition, 2021, 60(20): 11448-11456.
    [10] ZHANG WM, MULLANEY EJ, LEI XG. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase[J]. Applied and Environmental Microbiology, 2007, 73(9): 3069-3076.
    [11] XIE Y, AN J, YANG GY, WU G, ZHANG Y, CUI L, FENG Y. Enhanced enzyme kinetic stability by increasing rigidity within the active site[J]. Journal of Biological Chemistry, 2014, 289(11): 7994-8006.
    [12] CUI YY, YANG M, LIU N, WANG SS, SUN Y, SUN GH, MOU HJ, ZHOU DQ. Computer-aided rational design strategy to improve the thermal stability of alginate lyase AlyMc[J]. Journal of Agricultural and Food Chemistry, 2024, 72(6): 3055-3065.
    [13] GOLDENZWEIG A, GOLDSMITH M, HILL SE, GERTMAN O, LAURINO P, ASHANI Y, DYM O, UNGER T, ALBECK S, PRILUSKY J, LIEBERMAN RL, AHARONI A, SILMAN I, SUSSMAN JL, TAWFIK DS, FLEISHMAN SJ. Automated structure- and sequence-based design of proteins for high bacterial expression and stability[J]. Molecular Cell, 2016, 63(2): 337-346.
    [14] LIU RC, WANG JC, XIONG P, CHEN Q, LIU HY. De novo sequence redesign of a functional Ras-binding domain globally inverted the surface charge distribution and led to extreme thermostability[J]. Biotechnology and Bioengineering, 2021, 118(5): 2031-2042.
    [15] BUß O, MULLER D, JAGER S, RUDAT J, RABE KS. Improvement in the thermostability of a β-amino acid converting ω-transaminase by using FoldX[J]. ChemBioChem, 2018, 19(4): 379-387.
    [16] CUI YL, CHEN YC, LIU XY, DONG SJ, TIAN YE, QIAO YX, MITRA R, HAN J, LI CL, HAN X, LIU WD, CHEN Q, WEI WQ, WANG X, DU WB, TANG SY, XIANG H, LIU HY, LIANG Y, HOUK KN, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3): 1340-1350.
    [17] ZHANG BF, LÜ C, ZHANG M, XU F. Improving the thermal stability of Proteus mirabilis lipase based on multiple computational design strategies[J]. Chinese Journal of Biotechnology, 2022, 38(4): 1537-1553.
    [18] LIU SF, ZHANG M, HONG DW, FANG ZM, XIAO YZ, FANG W, ZHANG XC. Improving the cellobiose hydrolysis activity of glucose-stimulating β-glucosidase Bgl2A[J]. Enzyme and Microbial Technology, 2023, 169: 110289.
    [19] XIONG P, HU XH, HUANG B, ZHANG JH, CHEN Q, LIU HY. Increasing the efficiency and accuracy of the ABACUS protein sequence design method[J]. Bioinformatics, 2020, 36(1): 136-144.
    [20] SCHYMKOWITZ J, BORG J, STRICHER F, NYS R, ROUSSEAU F, SERRANO L. The FoldX web server: an online force field[J]. Nucleic Acids Research, 2005, 33(Web Server issue): W382-W388.
    [21] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [22] HOU QZ, ROOMAN M, PUCCI F. Enzyme stability-activity trade-off: new insights from protein stability weaknesses and evolutionary conservation[J]. Journal of Chemical Theory and Computation, 2023, 19(12): 3664-3671.
    [23] JIANG SZ, LI JJ, CAO CJ, SHEN YL, NI JF. Molecular modification of β-glucosidase from the midgut of Macrotermes barneyi[J]. Chinese Journal of Biotechnology, 2018, 34(7): 1081-1090.
    [24] LI XX, XIA W, BAI YG, MA R, YANG H, LUO HY, SHI PJ. A novel thermostable GH3β-glucosidase from Talaromyce leycettanus with broad substrate specificity and significant soybean isoflavone glycosides- hydrolyzing capability[J]. BioMed Research International, 2018, 2018: 4794690.
    [25] YEOM SJ, KIM BN, KIM YS, OH DK. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus[J]. Journal of Agricultural and Food Chemistry, 2012, 60(6): 1535-1541.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

洪登望,董庆莲,房伟,张学成,肖亚中. β-葡萄糖苷酶Bgl2A:V224D稳定性的理性改造及其应用[J]. 微生物学通报, 2024, 51(12): 5214-5228

复制
分享
文章指标
  • 点击次数:68
  • 下载次数: 103
  • HTML阅读次数: 101
  • 引用次数: 0
历史
  • 收稿日期:2024-06-18
  • 录用日期:2024-08-10
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码