科微学术

微生物学通报

自噬相关基因ATG8在酵母细胞时序性寿命调控中的作用
作者:
基金项目:

国家自然科学基金(31701050);广东省自然科学基金(2022A1515010816);广东省医学技术科研基金(A2022368)


The autophagy-related gene ATG8 regulates the chronological lifespan of yeast cells
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | | | |
  • 文章评论
    摘要:

    【背景】自噬在调控细胞寿命和衰老过程中起着至关重要的作用,本课题组前期研究发现缺失自噬相关基因ATG8缩短酵母细胞复制性寿命,但有关其在寿命调控中的作用机制尚未明确。【目的】研究自噬相关基因ATG8在酵母细胞寿命调控中的作用及可能机制。【方法】基于基因同源重组原理构建ATG8基因过表达酵母菌株(ATG8 OE),检测ATG8基因缺失酵母菌株(atg8Δ)和ATG8 OE酵母菌株的时序性寿命(chronological lifespan, CLS),采用生长曲线仪检测各菌株的增殖速率,采用流式细胞仪检测各菌株的活性氧(reactive oxygen species, ROS)含量,采用实时荧光定量PCR (real-time quantitative PCR, RT-qPCR)检测各菌株的氧化应激相关基因转录水平,比色法检测各菌株的细胞凋亡关键酶胱天蛋白酶-3 (Caspase-3)活性。【结果】缺失ATG8基因缩短酵母时序性寿命,减弱细胞增殖速率;细胞内ROS含量增多,氧化应激相关基因表达下调,Caspase-3酶活性升高;ATG8 OE菌株时序性寿命和细胞增殖能力无明显变化,活性氧含量下降,氧化应激相关基因表达上调,Caspase-3酶活性无明显变化。【结论】自噬相关基因ATG8在调控酵母细胞时序性寿命和氧化应激反应中具有一定作用。

    Abstract:

    [Background] Autophagy plays a pivotal role in regulating the cell lifespan and aging. Our previous study showed that deletion of the autophagy-related gene ATG8 significantly decreased the replicative lifespan of yeast cells, while the specific mechanism remains to be explored. [Objective] To study the effect and potential mechanism of ATG8 in regulating the cellular lifespan of Saccharomyces cerevisiae. [Methods] The yeast strain overexpressing ATG8 (ATG8 OE) was constructed by homologous recombination. The chronological lifespans (CLS) of ATG8-deleted (atg8Δ) and ATG8 OE strains were measured. The proliferative rates of yeast cells were analyzed by a Bioscreen C MB instrument based on growth curves. The production of reactive oxygen species (ROS) was measured by flow cytometry. The expression levels of oxidative stress-related genes were determined by quantitative RT-PCR (RT-qPCR). The activity of the key apoptotic enzyme, Caspase-3, was measured by the colorimetric method. [Results] The deletion of ATG8 shortened the chronological lifespan and weakened the proliferation of yeast cells. Meanwhile, it increased the production of intracellular ROS, down-regulated the expression levels of oxidative stress-related genes, and enhanced the activity of caspase-3. The overexpression of ATG8 decreased the production of intracellular ROS and up-regulated the expression levels of oxidative stress-related genes in yeast cells. The ATG8 OE strain showed no significant change in the chronological lifespan, proliferation, or caspase-3 activity. [Conclusion] The autophagy-related gene ATG8 plays a role in regulating the chronological lifespan and oxidative stress response of yeast cells.

    参考文献
    [1] RAZA S. Autophagy and metabolic aging: Current understanding and future applications[J]. Biochimica et Biophysica Acta. Molecular Cell Research, 2024, 1871(6): 119753.
    [2] WATANABE Y, TAGUCHI K, TANAKA M. Roles of stress response in autophagy processes and aging-related diseases[J]. International Journal of Molecular Sciences, 2023, 24(18): 13804.
    [3] SHINTANI T, KLIONSKY DJ. Autophagy in health and disease: a double-edged sword[J]. Science, 2004, 306(5698): 990-995.
    [4] TSUKAMOTO S, KUMA A, MURAKAMI M, KISHI C, YAMAMOTO A, MIZUSHIMA N. Autophagy is essential for preimplantation development of mouse embryos[J]. Science, 2008, 321(5885): 117-120.
    [5] NGUYEN TN, LAZAROU M. A unifying model for the role of the ATG8 system in autophagy[J]. Journal of Cell Science, 2022, 135(11): jcs258997.
    [6] YU ZQ, SUN LL, JIANG ZD, LIU XM, ZHAO D, WANG HT, HE WZ, DONG MQ, DU LL. Atg38-Atg8 interaction in fission yeast establishes a positive feedback loop to promote autophagy[J]. Autophagy, 2020, 16(11): 2036-2051.
    [7] KABEYA Y, MIZUSHIMA N, UENO T, YAMAMOTO A, KIRISAKO T, NODA T, KOMINAMI E, OHSUMI Y, YOSHIMORI T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. The EMBO Journal, 2000, 19(21): 5720-5728.
    [8] CUI D, HUO SS, WANG X, ZHENG ZQ, ZHANG YH, ZHANG JL, ZHONG F. Establishment of canine macrophages stably expressing GFP-tagged canine LC3 protein for effectively detecting autophagy[J]. Molecular and Cellular Probes, 2020, 49: 101493.
    [9] ODOH CK, GUO XJ, ARNONE JT, WANG XY, ZHAO ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae[J]. Biogerontology, 2022, 23(2): 169-199.
    [10] CUI HJ, CUI XJ, YANG XD, CUI XG, SUN YX, YUAN D, CUI Q, DENG YW, SUN EH, CHEN YQ, GUO HS, DENG ZL, WANG JF, XU S, SUN XR, ZHAO W, LIU XG. Effect of ATG8 or SAC1 deficiency on the cell proliferation and lifespan of the long-lived PMT1 deficiency yeast cells[J]. FEMS Microbiology Letters, 2024, 371: fnad121.
    [11] CUI HJ, CUI XG, JING X, YUAN Y, CHEN YQ, SUN YX, ZHAO W, LIU XG. GAS1 deficient enhances UPR activity in Saccharomyces cerevisiae[J]. BioMed Research International, 2019, 2019: 1238581.
    [12] PARRELLA E, LONGO VD. The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease[J]. Methods, 2008, 46(4): 256-262.
    [13] ZHAO W, GUO F, KONG LY, LIU JX, HONG XS, JIANG ZW, SONG HC, CUI XJ, RUAN J, LIU XG. Yeast YPK9 deficiency results in shortened replicative lifespan and sensitivity to hydrogen peroxide[J]. Biogerontology, 2021, 22(5): 547-563.
    [14] JOMOVA K, ALOMAR SY, ALWASEL SH, NEPOVIMOVA E, KUCA K, VALKO M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants[J]. Archives of Toxicology, 2024, 98(5): 1323-1367.
    [15] ISLAM A, CHANG YC, TSAO NW, WANG SY, CHUEH PJ. Calocedrus formosana essential oils induce ROS-mediated autophagy and apoptosis by targeting SIRT1 in colon cancer cells[J]. Antioxidants, 2024, 13(3): 284.
    [16] LEI YC, HUANG YX, WEN X, YIN ZY, ZHANG ZH, KLIONSKY DJ. How cells deal with the fluctuating environment: autophagy regulation under stress in yeast and mammalian systems[J]. Antioxidants, 2022, 11(2): 304.
    [17] 李云基, 熊罗节, 田岳凤, 翟春涛, 李玮. 端粒及线粒体自噬与细胞衰老关系的分析[J]. 中国医学创新, 2023, 20(14): 164-169. LI YJ, XIONG LJ, TIAN YF, ZHAI CT, LI W. Analysis of the relationship between telomere and mitophagy and cell aging[J]. Medical Innovation of China, 2023, 20(14): 164-169(in Chinese).
    [18] LÓPEZ-OTÍN C, BLASCO MA, PARTRIDGE L, SERRANO M, KROEMER G. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278.
    [19] LEE JS, GIORDANO S, ZHANG JH. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling[J]. The Biochemical Journal, 2012, 441(2): 523-540.
    [20] ZHANG Y, QI HY, TAYLOR R, XU WH, LIU LF, JIN SK. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains[J]. Autophagy, 2007, 3(4): 337-346.
    [21] WU JJ, QUIJANO C, CHEN E, LIU HJ, CAO L, FERGUSSON MM, ROVIRA II, GUTKIND S, DANIELS MP, KOMATSU M, FINKEL T. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy[J]. Aging, 2009, 1(4): 425-437.
    [22] BENSAAD K, CHEUNG EC, VOUSDEN KH. Modulation of intracellular ROS levels by TIGAR controls autophagy[J]. The EMBO Journal, 2009, 28(19): 3015-3026.
    [23] ZHAO XR, FENG WJ, ZHU XY, LI CX, MA?畘汙氬?捌潉瘠敘爬愠杚效?爠敘杄甬氠慗瑅楉漠湄獓?漠晃?慮畳瑥潲灶桥慤朠祡?扴祯?剨佡卧??晰牡潴浨?楡湹搠畣捯瑮楴潲湩?瑵潴?浳愠瑴畯爠慳瑴楲潥湳孳?嵴???畲瑡潮灣桥愠条祮???ど???????????ㄠ??て??????ially controls autophagic flux upon nutrient starvation in Cryptococcus neoformans[J]. Frontiers in Microbiology, 2019, 10: 2690.
    [24] JING HJ, LIU HH, ZHANG L, GAO J, SONG HR, TAN XR. Ethanol induces autophagy regulated by mitochondrial ROS in Saccharomyces cerevisiae[J]. Journal of Microbiology and Biotechnology, 2018, 28(12): 1982-1991.
    [25] GIRI S, SHAHA C. Leishmania donovani parasite requires Atg8 protein for infectivity and survival under stress[J]. Cell Death & Disease, 2019, 10(11): 808.
    [26] 程万琪, 侯骞尧, 刘春凤, 钮成拓, 郑飞云, 李崎, 王金晶. 线粒体自噬基因对酿酒酵母抗氧化性能的影响[J]. 生物工程学报, 2023, 39(8): 3464-3480. CHENG WQ, HOU QY, LIU CF, NIU CT, ZHENG FY, LI Q, WANG JJ. Effect of mitophagy related genes on the antioxidant properties of Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2023, 39(8): 3464-3480(in Chinese).
    [27] JOMOVA K, RAPTOVA R, ALOMAR SY, ALWASEL SH, NEPOVIMOVA E, KUCA K, VALKO M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging[J]. Archives of Toxicology, 2023, 97(10): 2499-2574.
    [28] LAUN P, HEEREN G, RINNERTHALER M, RID R, KÖSSLER S, KOLLER L, BREITENBACH M. Senescence and apoptosis in yeast mother cell-specific aging and in higher cells: a short review[J]. Biochimica et Biophysica Acta, 2008, 1783(7): 1328-1334.
    [29] HERKER E, JUNGWIRTH H, LEHMANN KA, MALDENER C, FRÖHLICH KU, WISSING S, BÜTTNER S, FEHR M, SIGRIST S, MADEO F. Chronological aging leads to apoptosis in yeast[J]. The Journal of Cell Biology, 2004, 164(4): 501-507.
    [30] JI C, AMARNATH V, PIETENPOL JA, MARNETT LJ. 4-hydroxynonenal induces apoptosis via caspase-3 activation and cytochrome c release[J]. Chemical Research in Toxicology, 2001, 14(8): 1090-1096.
    [31] JEONG SY, SEOL DW. The role of mitochondria in apoptosis[J]. BMB Reports, 2008, 41(1): 11-22.
    [32] ZHOU J, LI XY, LIU YJ, FENG J, WU Y, SHEN HM, LU GD.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨晓迪,袁頔,崔晓静,华伟,邓雁文,陈亚芹,崔红晶. 自噬相关基因ATG8在酵母细胞时序性寿命调控中的作用[J]. 微生物学通报, 2025, 52(1): 363-372

复制
分享
文章指标
  • 点击次数:48
  • 下载次数: 59
  • HTML阅读次数: 48
  • 引用次数: 0
历史
  • 收稿日期:2024-04-06
  • 录用日期:2024-07-15
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码