科微学术

微生物学通报

桑酮G对变异链球菌生长和生物被膜形成的影响
作者:
基金项目:

国家自然科学基金(31660003);湖南省自然科学基金(2020JJ4501);湘西自治州科技计划(201739)


Effects of kuwanon G on the growth and biofilm formation of Streptococcus mutans
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】变异链球菌(Streptococcus mutans)是导致龋齿的主要病原体,含氟产品虽然能治疗龋齿,但是会对人体造成危害。【目的】推动植物源抗龋齿药物的进一步开发利用,研究桑酮G对变异链球菌生长和生物被膜形成的影响。【方法】通过微量稀释法、平板计数法测定桑酮G对变异链球菌浮游菌的抗菌作用;通过pH计测量桑酮G对变异链球菌糖酵解产酸的影响;采用结晶紫染色测量生物被膜形成量;使用苯酚硫酸法测量水不溶性多糖的含量并通过激光扫描共聚焦显微镜观察胞外DNA量来评估桑酮G对生物被膜形成的影响;用逆转录实时荧光定量PCR测量生物被膜中毒力基因的mRNA水平。【结果】桑酮G对变异链球菌的最小抑菌浓度为8 μg/mL,最低杀菌浓度为64 μg/mL,高浓度桑酮G对变异链球菌呈现较强的杀菌效果;桑酮G能抑制生物被膜中gtfBgtfCgtfDldhcomDvicKatpFgbpB的表达,降低水不溶性多糖的合成,抑制生物被膜的形成,并降低生物被膜中胞外DNA含量及生物被膜的形成量,同时还对变异链球菌的产酸耐酸能力产生负面影响。【结论】桑酮G能通过降低毒力基因的mRNA水平,使得生物被膜的黏附力降低,结构变得松散,对生物被膜形成起到抑制作用,期望能够为植物源天然产物的进一步应用提供一定的理论基础。

    Abstract:

    [Background] Streptococcus mutans stands as the primary pathogen responsible for dental caries. Despite the definite efficacy in treating dental caries, fluoride-containing products pose potential risks to human health. [Objective] We investigated the effects of kuwanon G on the growth and biofilm formation of S. mutans, aiming to facilitate the development of plant-derived anti-caries medications. [Methods] The microdilution and plate counting methods were employed to study the effects of kuwanon G on the viability and acid tolerance of planktonic S. mutans. Furthermore, the influence of kuwanon G on the acid production by glycolysis in S. mutans was gauged by a pH meter. Quantification of biofilm formation was executed via crystal violet staining, and the content of water-insoluble polysaccharides was determined by the phenol-sulfuric acid method. Additionally, laser scanning confocal microscopy was employed to observe the quantity of extracellular DNA, elucidating the effects of kuwanon G on biofilm development. Real-time fluorescence quantitative PCR was employed to assess the mRNA levels of virulence genes in the biofilm. [Results] Kuwanon G showed the minimum inhibitory concentration of 8 μg/mL and the minimum bactericidal concentration of 64 μg/mL against S. mutans. Notably, at higher concentrations, kuwanon G exhibited a potent bactericidal effect on S. mutans. Kuwanon G suppressed the expression of gtfB, gtfC, gtfD, ldh, comD, vicK, atpF, and gbpB in the biofilm milieu, thereby diminishing the synthesis of water-insoluble polysaccharides and impeding biofilm formation. Furthermore, it reduced the content of extracellular DNA in the biofilm matrix and curtailed the overall extent of biofilm formation. Moreover, kuwanon G adversely affected the acid production and acid tolerance of S. mutans. [Conclusion] Kuwanon G can down-regulate the mRNA levels of virulence genes to inhibit the adhesion and loosen the structure of the biofilm, thus exerting inhibitory effects on biofilm formation. This study offers a theoretical basis for further applications of plant-derived natural products.

    参考文献
    [1] KONG JH, XIA K, SU XQ, ZHENG X, DIAO CH, YANG XF, ZUO XB, XU J, LIANG XL. Mechanistic insights into the inhibitory effect of theaflavins on virulence factors production in Streptococcus mutans[J]. AMB Express, 2021, 11(1): 102.
    [2] FILOCHE SK, SOMA K, SISSONS CH. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate[J]. Oral Microbiology and Immunology, 2005, 20(4): 221-225.
    [3] ZHU JY, CHU WL, LUO J, YANG JJ, HE LB, LI JY. Dental materials for oral microbiota dysbiosis: an update[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 900918.
    [4] GAN WJ, GAO CL, ZHANG WQ, GU JL, ZHAO TT, GUO HL, ZHOU H, XU Y, YU LL, LI LF, GUI DK, XU YH. Kuwanon G protects HT22 cells from advanced glycation end product-induced damage[J]. Experimental and Therapeutic Medicine, 2021, 21(5): 425.
    [5] LIU XX, ZHANG XW, WANG K, WANG XY, MA WL, CAO W, MO D, SUN Y, LI XQ. Kuwanon G attenuates atherosclerosis by upregulation of LXRα-ABCA1/ABCG1 and inhibition of NFκB activity in macrophages[J]. Toxicology and Applied Pharmacology, 2018, 341: 56-63.
    [6] JIN SE, HA H, SHIN HK, SEO CS. Anti-allergic and anti-inflammatory effects of kuwanon G and morusin on MC/9 mast cells and HaCaT keratinocytes[J]. Molecules, 2019, 24(2): 265.
    [7] PARK KM, YOU JS, LEE HY, BAEK NI, HWANG JK. Kuwanon G: an antibacterial agent from the root bark of Morus alba against oral pathogens[J]. Journal of Ethnopharmacology, 2003, 84(2/3): 181-185.
    [8] PANG DR, LIAO ST, WANG WF, MU LX, LI EN, SHEN WZ, LIU F, ZOU YX. Destruction of the cell membrane and inhibition of cell phosphatidic acid biosynthesis in Staphylococcus aureus: an explanation for the antibacterial mechanism of morusin[J]. Food & Function, 2019, 10(10): 6438-6446.
    [9] Wei B, Yang W, Yan Z X, Zhang Q W, Yan R. Prenylflavonoids sanggenon c and kuwanon G from mulberry (Morus alba L.) as potent broad-spectrum bacterial β-glucuronidase inhibitors: biological evaluation and molecular docking studies[J]. Journal of Functional Foods, 2018, 48: 210-219.
    [10] WU SC, HAN F, SONG MR, CHEN S, LI Q, ZHANG Q, ZHU K, SHEN JZ. Natural flavones from Morus alba against methicillin-resistant Staphylococcus aureus via targeting the proton motive force and membrane permeability[J]. Journal of Agricultural and Food Chemistry, 2019, 67(36): 10222-10234.
    [11] TAKENAKA S, ODA M, DOMON H, OHSUMI T, SUZUKI Y, OHSHIMA H, YAMAMOTO H, TERAO Y, NOIRI Y. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture[J]. Biochemical and Biophysical Research Communications, 2016, 480(2): 173-179.
    [12] 刘一涵, 田云刚, 王建霞, 郭洪伟, 魏华. 响应曲面法优化桑白皮中3个成分的提取工艺[J]. 中国现代中药, 2020, 22(7): 1100-1107. LIU YH, TIAN YG, WANG JX, GUO HW, WEI H. Optimization of extraction technology of three components in Mori cortex by response surface methodology[J]. Modern Chinese Medicine, 2020, 22(7): 1100-1107(in Chinese).
    [13] 刘梓萱, 杨芳, 唐双焱, 金建明, 肖俊松, 吴华. 有机栽培龙脑百里香精油对白色念珠菌体外抑菌活性的研究[J]. 微生物学通报, 2024, 51(2): 642-654. LIU ZX, YANG F, TANG SY, JIN JM, XIAO JS, WU H. In vitro inhibitory activity of organic Thymus vulgaris CT borneol essential oil against Candida albicans[J]. Microbiology China, 2024, 51(2): 642-654(in Chinese).
    [14] 何学文, 戴雨芸, 李欣越, 何泾正, 李超, 程娇, 尹立子. 肉桂醛体外对鼠伤寒沙门氏菌的抑菌机制[J]. 江西农业大学学报, 2020, 42(1): 150-156. HE XW, DAI YY, LI XY, HE JZ, LI C, CHENG J, YIN LZ. Antibacterial mechanism of cinnamaldehyde on Salmonella typhimuriumin vitro[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(1): 150-156(in Chinese).
    [15] VISZWAPRIYA D, SUBRAMENIUM GA, RADHIKA S, PANDIAN SK. Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes[J]. Antonie Van Leeuwenhoek, 2017, 110(1): 153-165.
    [16] 张一博, 张仲, 董千雨, 蔡锦林, 周慧灵, 王学润, 李雨庆, 王国庆. 桂皮醛对口腔链球菌多菌种生物膜的抑制作用[J]. 现代预防医学, 2023, 50(7): 1304-1309, 1332. ZHANG YB, ZHANG Z, DONG QY, CAI JL, ZHOU HL, WANG XR, LI YQ, WANG GQ. Inhibitory effect of cinnamaldehyde on multi-species biofilm of oral streptococci[J]. Modern Preventive Medicine, 2023, 50(7): 1304-1309, 1332(in Chinese).
    [17] COFFEY BM, ANDERSON GG. Biofilm formation in the 96-well microtiter plate[J]. Methods in Molecular Biology, 2014, 1149: 631-641.
    [18] GUAN CR, CHE FA, ZHOU HX, LI YW, LI YR, CHU JP. Effect of rubusoside, a natural sucrose substitute, on Streptococcus mutans biofilm cariogenic potential and virulence gene expression in vitro[J]. Applied and Environmental Microbiology, 2020, 86(16): e01012-20.
    [19] WANG S, WANG Y, WANG Y, DUAN ZH, LING ZX, WU WZ, TONG SM, WANG HM, DENG SL. Theaflavin-3,3'-digallate suppresses biofilm formation, acid production, and acid tolerance in Streptococcus mutans by targeting virulence factors[J]. Frontiers in Microbiology, 2019, 10: 1705.
    [20] HE ZY, HUANG ZW, JIANG W, ZHOU W. Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms[J]. Frontiers in Microbiology, 2019, 10: 2241.
    [21] WIEGAND I, HILPERT K, HANCOCK REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances[J]. Nature Protocols, 2008, 3: 163-175.
    [22] LIAO SM, KLEIN MI, HEIM KP, FAN YW, BITOUN JP, AHN SJ, BURNE RA, KOO H, BRADY LJ, WEN ZT. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery[J]. Journal of Bacteriology, 2014, 196(13): 2355-2366.
    [23] BOWEN WH, KOO H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms[J]. Caries Research, 2011, 45(1): 69-86.
    [24] FUJITA K, TAKASHIMA Y, INAGAKI S, NAGAYAMA K, NOMURA R, ARDIN AC, GRÖNROOS L, ALALUUSUA S, OOSHIMA T, MATSUMOTO-NAKANO M. Correlation of biological properties with glucan-binding protein B expression profile in Streptococcus mutans clinical isolates[J]. Archives of Oral Biology, 2011, 56(3): 258-263.
    [25] LEI L, LONG L, YANG X, QIU Y, ZENG YL, HU T, WANG SD, LI YQ. The VicRK two-component system regulates Streptococcus mutans virulence[J]. Current Issues in Molecular Biology, 2019, 32: 167-200.
    [26] KAUR G, BALAMURUGAN P, PRINCY SA. Inhibition of the quorum sensing system (ComDE pathway) by aromatic 1,3-di-m-tolylurea (DMTU): cariostatic effect with fluoride in wistar rats[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 313.
    [27] CASTILLO PEDRAZA MC, NOVAIS TF, FAUSTOFERRI RC, QUIVEY RG Jr, TEREKHOV A, HAMAKER BR, KLEIN MI. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms[J]. Biofouling, 2017, 33(9): 722-740.
    [28] KUANG XY, CHEN V, XU X. Novel approaches to the control of oral microbial biofilms[J]. BioMed Research International, 2018, 2018: 6498932.
    [29] YAMASHITA Y, BOWEN WH, BURNE RA, KURAMITSU HK. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen- free rat model[J]. Infection and Immunity, 1993, 61(9): 3811-3817.
    [30] 张耀超, 左艳萍, 周芳, 唐成芳, 张琳梅. 落叶松脂醇-4-β-d-吡喃葡糖苷抑制变异链球菌生长和生物膜形成的作用研究[J]. 微生物学报, 2020, 60(7): 1479-1487. ZHANG YC, ZUO YP, ZHOU F, TANG CF, ZHANG LM. Effect of lariciresinol-4-beta-d-glucopyranoside on the growth and biofilm formation of Streptococcus mutans[J]. Acta Microbiologica Sinica, 2020, 60(7): 1479-1487(in Chinese).
    [31] WU JY, FAN Y, WANG XY, JIANG XG, ZOU J, HUANG RJ. Effects of the natural compound, oxyresveratrol, on the growth of Streptococcus mutans, and on biofilm formation, acid production, and virulence gene expression[J]. European Journal of Oral Sciences, 2020, 128(1): 18-26.
    [32] BANAS JA. Virulence properties of Streptococcus mutans[J]. Frontiers in Bioscience: a Journal and Virtual Library, 2004, 9: 1267-1277.
    [33] PANDIT S, CHANG KW, JEON JG. Effects of Withania somnifera on the growth and virulence properties of Streptococcus mutans and Streptococcus sobrinus at sub-MIC levels[J]. Anaerobe, 2013, 19: 1-8.
    [34] DENG YL, YANG YM, ZHANG B, CHEN H, LU YY, REN SR, LEI L, HU T. The vicK gene of Streptococcus mutans mediates its cariogenicity via exopolysaccharides metabolism[J]. International Journal of Oral Science, 2021, 13: 45.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邹文海,达春瑶,肖颖欣,龚志港,刘祝祥. 桑酮G对变异链球菌生长和生物被膜形成的影响[J]. 微生物学通报, 2025, 52(1): 350-362

复制
分享
文章指标
  • 点击次数:52
  • 下载次数: 86
  • HTML阅读次数: 87
  • 引用次数: 0
历史
  • 收稿日期:2024-04-02
  • 录用日期:2024-05-07
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码