科微学术

微生物学通报

链霉菌HKIB0006中collismycin A葡萄糖酸修饰产物的发现
作者:
基金项目:

国家自然科学基金(22177050);中国科学院青年促进会项目(2022395);兴滇英才支持计划(XDYC-QNRC-2022-0774);云南省基础研究面上项目(202301AT070323);云南省科技厅科技计划(2019FB060,202301AZ070001-050)


Discovery of products of collismycin A modified with gluconic acid in Streptomyces sp. HKIB0006
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • | | | |
  • 文章评论
    摘要:

    【背景】2,2'-联吡啶类天然产物是一类由放线菌产生的抗菌化合物,抑制真菌活性显著,结构特征为包含2,2'-联吡啶片段。该类化合物未发现经后修饰的失活产物,其自抗性机制尚未明确。【目的】通过分离纯化并鉴定2,2'-联吡啶类化合物的后修饰产物,测试其抗真菌活性,评价后修饰对抗真菌活性的影响,初步探求2,2'-联吡啶类化合物存在的自我保护机制。【方法】利用纸片扩散法筛选对真菌有拮抗能力的放线菌并分离纯化该菌株;通过基因组测序及分析对其进行鉴定;利用硅胶柱色谱、高效液相色谱等手段分离纯化目标化合物,通过核磁共振波谱和质谱鉴定其结构;测定目标化合物抗真菌活性;最后通过序列比对来分析推测糖基转移酶。【结果】在链霉菌(Streptomyces sp.) HKIB0006中鉴定了2个2,2'-联吡啶类化合物。其中一个为新结构11-O-gluconicacid-collismycin A (1),为已知抗生素collismycin A (2)的11位葡萄糖酸修饰产物,实验表明1的抗真菌活性消失。【结论】对化合物12进行抗菌活性测试,活性测试发现葡萄糖酸修饰导致1的抗菌活性丧失,推测葡萄糖酸修饰可能是2,2'-联吡啶类化合物的一种自抗性机制,该修饰可能是菌株HKIB0006在与2长期共存中进化出的自我保护策略之一。

    Abstract:

    [Background] 2,2'-bipyridines, a class of antimicrobial compounds produced by actinomycetes, have significant antifungal activities and are featured by the 2,2'-bipyridine moiety. No deactivated compound after post-translational modification of the known 2,2'-bipyridines has been discovered, and the self-resistance mechanisms of microorganisms to these compounds remain to be reported. [Objective] To isolate, identify, and determine the antifungal activities of 2,2'-bipyridines from Streptomyces sp. HKIB0006, evaluate the effect of post-translational modification on the antifungal activity, and decipher the self-resistance mechanism of the strain to 2,2'-bipyridines. [Methods] We screened out a Streptomyces strain with anti-fungal activity by the disk diffusion method and then identified the strain by genome sequencing. The target compounds were separated by silica gel column chromatography and HPLC, and their structures were elucidated by MS and nuclear magnetic resonance spectroscopy. The antifungal activities of the isolated compounds were evaluated, and a glycosyltransferase responsible for the self-resistance was revealed by sequence alignment. [Results] Two 2,2'-bipyridines were isolated from the fermentation broth of Streptomyces sp. HKIB0006. One was a new compound named as 11-O-gluconicacid-collismycin A (1), and the other was the known antibiotic collismycin A (2). The antifungal assay of 1 and 2 showed that 1 was inactive and 2 was active. [Conclusion] The antibacterial activity of compounds 1 and 2 was tested. The compound 1 is a gluconic acid modification product of collismycin A, and it is inactive due to the gluconic acid modification. According to genetic analysis, we propose that the gluconic acid modification may represents one of the self-resistance mechanisms of strain HKIB0006 against collismycin A.

    参考文献
    [1] JOSE PA, MAHARSHI A, JHA B. Actinobacteria in natural products research: progress and prospects[J]. Microbiological Research, 2021, 246: 126708.
    [2] DEMAIN AL, SANCHEZ S. Microbial drug discovery: 80 years of progress[J]. The Journal of Antibiotics, 2009, 62(1): 5-16.
    [3] MAHAJAN GB, BALACHANDRAN L. Antibacterial agents from actinomycetes: a review[J]. Frontiers in Bioscience (Elite Edition), 2012, 4(1): 240-253.
    [4] FENICAL W, JENSEN PR, PALLADINO MA, LAM KS, LLOYD GK, POTTS BC. Discovery and development of the anticancer agent salinosporamide A (NPI-0052)[J]. Bioorganic & Medicinal Chemistry, 2009, 17(6): 2175-2180.
    [5] HARVEY AL, EDRADA-EBEL R, QUINN RJ. The re-emergence of natural products for drug discovery in the genomics era[J]. Nature Reviews Drug Discovery, 2015, 14: 111-129.
    [6] HAYASHI Y, YAMAZAKI-NAKAMURA Y, YAKUSHIJI F. Medicinal chemistry and chemical biology of diketopiperazine-type antimicrotubule and vascular-disrupting agents[J]. Chemical & Pharmaceutical Bulletin, 2013, 61(9): 889-901.
    [7] RUSSO P, del BUFALO A, FINI M. Deep sea as a source of novel-anticancer drugs: update on discovery and preclinical/clinical evaluation in a systems medicine perspective[J]. EXCLI Journal, 2015, 14: 228-236.
    [8] UM S, KIM YJ, KWON H, WEN H, KIM SH, KWON HC, PARK S, SHIN J, OH DC. Sungsanpin, a lasso peptide from a deep-sea streptomycete[J]. Journal of Natural Products, 2013, 76(5): 873-879.
    [9] DARBY EM, TRAMPARI E, SIASAT P, GAYA MS, ALAV I, WEBBER MA, BLAIR JMA. Molecular mechanisms of antibiotic resistance revisited[J]. Nature Reviews Microbiology, 2023, 21: 280-295.
    [10] 谢丽媛, 姜逢霖, 胡友财. 微生物中自抗性基因导向的基因组挖掘及其在天然产物发现中的应用[J]. 药学进展, 2023, 47(4): 244-259. XIE LY, JIANG FL, HU YC. Self-resistant gene-directed genome mining in microorganisms and its application in the discovery of natural products[J]. Progress in Pharmaceutical Sciences, 2023, 47(4): 244-259(in Chinese).
    [11] ALMABRUK KH, DINH LK, PHILMUS B. Self-resistance of natural product producers: past, present, and future focusing on self-resistant protein variants[J]. ACS Chemical Biology, 2018, 13(6): 1426-1437.
    [12] OHNUKI T, KATOH T, IMANAKA T, AIBA S. Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes[J]. Journal of Bacteriology, 1985, 161(3): 1010-1016.
    [13] BHUJBALRAO R, ANAND R. Deciphering determinants in ribosomal methyltransferases that confer antimicrobial resistance[J]. Journal of the American Chemical Society, 2019, 141(4): 1425-1429.
    [14] KHAREL MK, BASNET DB, LEE HC, LIOU K, MOON YH, KIM JJ, WOO JS, SOHNG JK. Molecular cloning and characterization of a 2-deoxystreptamine biosynthetic gene cluster in gentamicin-producing Micromonospora echinospora ATCC15835[J]. Molecules and Cells, 2004, 18(1): 71-78.
    [15] COUGHLIN JM, RUDOLF JD, WENDT- PIENKOWSKI E, WANG LY, UNSIN C, GALM U, YANG D, TAO MF, SHEN B. BlmB and TlmB provide resistance to the bleomycin family of antitumor antibiotics by N-acetylating metal-free bleomycin, tallysomycin, phleomycin, and zorbamycin[J]. Biochemistry, 2014, 53(44): 6901-6909.
    [16] CUTHBERTSON L, AHN SK, NODWELL JR. Deglycosylation as a mechanism of inducible antibiotic resistance revealed using a global relational tree for one-component regulators[J]. Chemistry & Biology, 2013, 20(2): 232-240.
    [17] QUIRÓS LM, AGUIRREZABALAGA I, OLANO C, MÉNDEZ C, SALAS JA. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus[J]. Molecular Microbiology, 1998, 28(6): 1177-1185.
    [18] GOURMELEN A, BLONDELET-ROUAULT MH, PERNODET JL. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens[J]. Antimicrobial Agents and Chemotherapy, 1998, 42(10): 2612-2619.
    [19] WANG H, van der DONK WA. Substrate selectivity of the sublancin S-glycosyltransferase[J]. Journal of the American Chemical Society, 2011, 133(41): 16394-16397.
    [20] ZHANG Y, WEN WH, PU JY, TANG MC, ZHANG LW, PENG C, XU YQ, TANG GL. Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): 11232-11237.
    [21] WEN WH, ZHANG Y, ZHANG YY, YU Q, JIANG CC, TANG MC, PU JY, WU L, ZHAO YL, SHI T, ZHOU JH, TANG GL. Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics[J]. Nature Communications, 2021, 12: 7085.
    [22] ZHANG YL, BAI J, ZHANG L, ZHANG C, LIU BY, HU YC. Self-resistance in the biosynthesis of fungal macrolides involving cycles of extracellular oxidative activation and intracellular reductive inactivation[J]. Angewandte Chemie (International Ed in English), 2021, 60(12): 6639-6645.
    [23] BAUMANN M, BAXENDALE IR, LEY SV, NIKBIN N, SMITH CD, TIERNEY JP. A modular flow reactor for performing Curtius rearrangements as a continuous flow process[J]. Organic & Biomolecular Chemistry, 2008, 6(9): 1577-1586.
    [24] HAPKE M, BRANDT L, LÜTZEN A. Versatile tools in the construction of substituted 2,2'-bipyridines: cross-coupling reactions with tin, zinc and boron compounds[J]. Chemical Society Reviews, 2008, 37(12): 2782-2797.
    [25] KAES C, KATZ A, HOSSEINI MW. Bipyridine:   the most widely used ligand. A review of molecules comprising at least two 2,2'-bipyridine units[J]. Chemical Reviews, 2000, 100(10): 3553-3590.
    [26] GOMI S, AMANO S, SATO E, MIYADOH S, KODAMA Y. Novel antibiotics SF2738A, B and C, and their analogs produced by Streptomyces sp.[J]. The Journal of Antibiotics, 1994, 47(12): 1385-1394.
    [27] KEM WR, SOTI F, RITTSCHOF D. Inhibition of barnacle larval settlement and crustacean toxicity of some hoplonemertine pyridyl alkaloids[J]. Biomolecular Engineering, 2003, 20(4/5/6): 355-361.
    [28] FU P, LIU PP, LI X, WANG Y, WANG SX, HONG K, ZHU WM. Cyclic bipyridine glycosides from the marine-derived actinomycete Actinoalloteichus cyanogriseus WH1-2216-6[J]. Organic Letters, 2011, 13(22): 5948-5951.
    [29] DU YQ, WANG C, CUI GD, CHU YW, JIA Q, WANG Y, ZHU WM. Cytotoxic and optically active pyrisulfoxins from the endophytic Streptomyces albolongus EA12432[J]. Frontiers in Chemistry, 2020, 8: 248.
    [30] 于冬梅, 朱峰, 邢志富, 范海燕, 朱晓峰, 段玉玺, 王媛媛, 刘晓宇, 陈立杰. 碳代谢基因gabT调控生防菌Snea253的γ-氨基丁酸代谢途径影响杀线虫活性[J]. 微生物学通报, 2019, 46(12): 3257-3266. YU DM, ZHU F, XING ZF, FAN HY, ZHU XF, DUAN YX, WANG YY, LIU XY, CHEN LJ. Carbon metabolism gene gabT regulates γ-aminobutyric acid metabolism of Streptomyces venezuelae Snea253 on nematicidal activity[J]. Microbiology China, 2019, 46(12): 3257-3266(in Chinese).
    [31] 付祖姣, 刘宇波, 郭照辉, 杨华, 罗容珺, 刘欢, 毕世宇, 肖蓉, 胡展, 刘万钧. 链霉菌Ahn75菌剂助剂的筛选及对水稻稻瘟病的防效研究[J]. 激光生物学报, 2022, 31(4): 321-330, 336. FU ZJ, LIU YB, GUO ZH, YANG H, LUO RJ, LIU H, BI SY, XIAO R, HU Z, LIU WJ. Screening of adjuvants for Streptomyces griseobrunneus Ahn75 agent and its control effects on rice blast[J]. Acta Laser Biology Sinica, 2022, 31(4): 321-330, 336(in Chinese).
    [32] 张晓伟, 卢欣雨, 陈琴, 赵胜宗, 刘彦. 高效降解脱铬皮屑的菌株筛选[J]. 皮革科学与工程, 2022,32(3): 36-41. ZHANG XW, LU XY, CHEN Q, ZHAO SZ, LIU Y. Screening of efficiently degradation strains for dechromed wet blue shavings[J]. Leather Science and Engineering, 2022,32(3): 36-41(in Chinese).
    [33] 刘丽娜, 杜仁鹏, 徐家菊, 赵丹. 产胞外多糖酵母菌的筛选鉴定及发酵条件优化[J]. 黑龙江大学自然科学学报, 2023, 40(2): 199-208, 253. LIU LN, DU RP, XU JJ, ZHAO D. Screening and identification of exopolysac charide-producing yeast and optimization of fermentation on conditions[J]. Journal of Natural Science of Heilongjiang University, 2023, 40(2): 199-208, 253(in Chinese).
    [34] SHINDO K, YAMAGISHI Y, OKADA Y, KAWAI H. Collismycins A and B, novel non-steroidal inhibitors of dexamethasone-glucocorticoid receptor binding[J]. The Journal of Antibiotics, 1994, 47(9): 1072-1074.
    [35] BLIN K, SHAW S, AUGUSTIJN HE, REITZ ZL, BIERMANN F, ALANJARY M, FETTER A, TERLOUW BR, METCALF WW, HELFRICH EJN, van WEZEL GP, MEDEMA MH, WEBER T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation[J]. Nucleic Acids Research, 2023, 51(W1): W46-W50.
    [36] CHEN M, PANG B, DING WP, ZHAO QF, TANG ZJ, LIU W. Investigation of 2,2'-bipyridine biosynthesis reveals a common two-component system for aldehydes production by carboxylate reduction[J]. Organic Letters, 2022, 24(3): 897-902.
    [37] REN J, BARTON CD, SORENSON KE, ZHAN JX. Identification of a novel glucuronyltransferase from Streptomyces chromofuscus ATCC 49982 for natural product glucuronidation[J]. Applied Microbiology and Biotechnology, 2022, 106(3): 1165-1183.
    [38] LI XH, JU JH. Intracellularly driven chemical modifications of antimicrobial secondary metabolites: potent mechanisms of self-resistance[J]. Pharmaceutical Science Advances, 2024, 2: 100032.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吉火伍来,赵子康,陈媛,曹明明,张雅琼. 链霉菌HKIB0006中collismycin A葡萄糖酸修饰产物的发现[J]. 微生物学通报, 2025, 52(1): 337-349

复制
分享
文章指标
  • 点击次数:29
  • 下载次数: 54
  • HTML阅读次数: 62
  • 引用次数: 0
历史
  • 收稿日期:2024-04-26
  • 录用日期:2024-05-29
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码