科微学术

微生物学通报

还原性脱卤酶的生物信息学分析
作者:
基金项目:

国家重点研发计划(2023YFE0122000);国家自然科学基金(42177220,42377133)


Bioinformatics analysis of reductive dehalogenases
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • | | | |
  • 文章评论
    摘要:

    【背景】有机卤呼吸细菌介导的还原性脱卤过程对于卤素循环与有机卤污染场地的修复至关重要。还原性脱卤酶(reductive dehalogenases, RDases)作为有机卤呼吸的末端电子受体还原酶,在脱卤过程中起着关键作用。【目的】系统地了解还原性脱卤酶的序列与结构特征,为阐明还原性脱卤酶及有机卤呼吸细菌作用机制及生物学功能奠定基础。【方法】应用多种生物信息学分析工具对44个还原性脱卤酶蛋白的基本理化性质、跨膜结构、信号肽、磷酸化位点、系统发育关系、多序列比对的同源性矩阵、保守基序、保守结构域、二级结构、三级结构及无序区域进行预测分析。【结果】不同还原性脱卤酶蛋白的理化性质存在差异,但呈现出一定的保守性。不同还原性脱卤酶蛋白的磷酸化位点、保守结构域分布、保守基序分布,以及二级结构的保守性较高。底物类别相似或相同的还原性脱卤酶在蛋白序列和三级结构上更为相似。大多数还原性脱卤酶蛋白的亲缘关系较近。还原性脱卤酶蛋白主要为分泌型蛋白、非膜定位蛋白和固有无序蛋白。【结论】不同还原性脱卤酶蛋白具有一定的保守性,因此能够发挥相似的生物学功能。研究结果对进一步研究还原性脱卤酶具有一定的参考价值,尤其是为基于还原性脱卤酶的有机卤呼吸细菌应用于实际场地修复提供科学依据与理论参考。

    Abstract:

    [Background] The reductive dehalogenation process mediated by organohalide- respiring bacteria is crucial for halogen cycling and the remediation of organohalide- contaminated sites. Reductive dehalogenases (RDases), as terminal electron acceptor reductases in organohalide respiration, play a critical role in dehalogenation. [Objective] To systematically understand the sequence and structural characteristics of RDase proteins and lay a foundation for elucidating the mechanisms and biological functions of RDases and organohalide-respiring bacteria. [Methods] Multiple bioinformatics tools were used to predict the basic physicochemical properties, transmembrane structures, signal peptides, phosphorylation sites, phylogenetic relationship, homology matrix of multiple sequence alignments, conserved motifs, conserved domains, secondary structures, tertiary structures, and disordered regions of 44 RDase proteins. [Results] The physicochemical properties varied among different RDase proteins, but they were conserved to some extent. The phosphorylation sites, distribution of conserved domains, distribution of conserved motifs, and secondary structures were highly conserved among different RDases proteins. The RDases with similar or identical substrate categories tended to have greater similarity in their protein sequences and tertiary structures. The phylogenetic relationships were relatively close among most RDase proteins. RDase proteins were primarily secretory proteins, non-membrane proteins, and intrinsically disordered proteins. [Conclusion] Different RDase proteins are conserved to some extent and thus have similar biological functions. The findings provide a valuable reference for further studies on RDases, particularly offering scientific evidence and theoretical support for the application of organohalide-respiring bacteria based on RDases in site remediation.

    参考文献
    [1] LIU YH, WANG L, LIU RL, FANG JS. Biogeochemical cycling of halogenated organic compounds in the ocean: current progress and future directions[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 205: 104237.
    [2] AGARWAL V, MILES ZD, WINTER JM, EUSTÁQUIO AS, EL GAMAL AA, MOORE BS. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse[J]. Chemical Reviews, 2017, 117(8): 5619-5674.
    [3] ATASHGAHI S, HÄGGBLOM MM, SMIDT H. Organohalide respiration in pristine environments: implications for the natural halogen cycle[J]. Environmental Microbiology, 2018, 20(3): 934-948.
    [4] ZHANG M, SHI Q, SONG XZ, WANG H, BIAN ZY. Recent electrochemical methods in electrochemical degradation of halogenated organics: a review[J]. Environmental Science and Pollution Research International, 2019, 26(11): 10457-10486.
    [5] LOOS R, LOCORO G, COMERO S, CONTINI S, SCHWESIG D, WERRES F, BALSAA P, GANS O, WEISS S, BLAHA L, BOLCHI M, GAWLIK BM. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water[J]. Water Research, 2010, 44(14): 4115-4126.
    [6] JOHNSON-RESTREPO B, KANNAN K, ADDINK R, ADAMS DH. Polybrominated diphenyl ethers and polychlorinated biphenyls in a marine foodweb of coastal Florida[J]. Environmental Science & Technology, 2005, 39(21): 8243-8250.
    [7] XU Y, YU RMK, ZHANG XW, MURPHY MB, GIESY JP, LAM MHW, LAM PKS, WU RSS, YU HX. Effects of PCBs and MeSO2–PCBs on adrenocortical steroidogenesis in H295R human adrenocortical carcinoma cells[J]. Chemosphere, 2006, 63(5): 772-784.
    [8] LU QH, QIU L, YU L, ZHANG SW, de TOLEDO RA, SHIM H, WANG SQ. Microbial transformation of chiral organohalides: distribution, microorganisms and mechanisms[J]. Journal of Hazardous Materials, 2019, 368: 849-861.
    [9] WU RF, WANG SQ. Integration of microbial reductive dehalogenation with persulfate activation and oxidation (Bio-RD-PAO) for complete attenuation of organohalides[J]. Frontiers of Environmental Science & Engineering, 2021, 16(2): 22.
    [10] FALANDYSZ J, ROSE M, FERNANDES AR. Mixed poly-brominated/chlorinated biphenyls (PXBs): widespread food and environmental contaminants[J]. Environment International, 2012, 44: 118-127.
    [11] ZHANG ZW, PEI NC, SUN YX, LI JL, LI XP, YU S, XU XR, HU YX, MAI BX. Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the Jiulong River Estuary, South China[J]. Environmental Research, 2019, 171: 145-152.
    [12] RAI AR, SINGH RP, SRIVASTAVA AK, DUBEY RC. Structure prediction and evolution of a halo-acid dehalogenase of Burkholderia mallei[J]. Bioinformation, 2012, 8(22): 1111-1113.
    [13] JUGDER BE, ERTAN H, BOHL S, LEE M, MARQUIS CP, MANEFIELD M. Organohalide respiring bacteria and reductive dehalogenases: key tools in organohalide bioremediation[J]. Frontiers in Microbiology, 2016, 7: 249.
    [14] SUFLITA JM, HOROWITZ A, SHELTON DR, TIEDJE JM. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science, 1982, 218(4577): 1115-1117.
    [15] LEYS D, ADRIAN L, SMIDT H. Organohalide respiration: microbes breathing chlorinated molecules[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616): 20120316.
    [16] RICHARDSON RE. Genomic insights into organohalide respiration[J]. Current Opinion in Biotechnology, 2013, 24(3): 498-505.
    [17] BOMMER M, KUNZE C, FESSELER J, SCHUBERT T, DIEKERT G, DOBBEK H. Structural basis for organohalide respiration[J]. Science, 2014, 346(6208): 455-458.
    [18] HUG LA, MAPHOSA F, LEYS D, LÖFFLER FE, SMIDT H, EDWARDS EA, ADRIAN L. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616): 20120322.
    [19] SCHUBERT T, DIEKERT G. Comparative biochemistry of organohalide respiration[M]// Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016: 397-427.
    [20] SCHUBERT T, ADRIAN L, SAWERS RG, DIEKERT G. Organohalide respiratory chains: composition, topology and key enzymes[J]. FEMS Microbiology Ecology, 2018, 94(4): fiy035.
    [21] NAKAMURA R, OBATA T, NOJIMA R, HASHIMOTO Y, NOGUCHI K, OGAWA T, YOHDA M. Functional expression and characterization of tetrachloroethene dehalogenase from Geobacter sp.[J]. Frontiers in Microbiology, 2018, 9: 1774.
    [22] MOLENDA O, PUENTES JÁCOME LA, CAO X, NESBØ CL, TANG SQ, MORSON N, PATRON J, LOMHEIM L, WISHART DS, EDWARDS EA. Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification[J]. Environmental Science Processes & Impacts, 2020, 22(3): 663-678.
    [23] JAMAL S, ALI W, NAGPAL P, GROVER A, GROVER S. Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins[J]. Journal of Translational Medicine, 2021, 19(1): 218.
    [24] ARDITO F, GIULIANI M, PERRONE D, TROIANO G, MUZIO LL. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review)[J]. International Journal of Molecular Medicine, 2017, 40(2): 271-280.
    [25] DUNKER AK, LAWSON JD, BROWN CJ, WILLIAMS RM, ROMERO P, OH JS, OLDFIELD CJ, CAMPEN AM, RATLIFF CM, HIPPS KW, AUSIO J, NISSEN MS, REEVES R, KANG C,挠態汉?敓晉晎敇捅瑒猠?潒昬?潂獁浉潌瑅楙挠?獗琬爠敇獒獉?潗湏?捄攠汍汄猬嬠?嵈??丠慗琬甠片敁??潅浒洠畅湃椬挠慏瑂楒潁湄獏??至????????????????? disordered protein[J]. Journal of Molecular Graphics and Modelling, 2001, 19(1): 26-59.
    [26] 朱玉风, 陈艳如, 曹赞霞, 王吉华. 固有无序蛋白质(IDPs)的预测和分子动力学模拟研究[J]. 德州学院学报, 2014, 30(6): 6-13. ZHU YF, CHEN YR, CAO ZX, WANG JH. Study on intrinsically disordered proteins (IDPs) by prediction and molecular dynamics simulation[J]. Journal of Dezhou University, 2014, 30(6): 6-13(in Chinese).
    [27] UVERSKY VN. Introduction to intrinsically disordered proteins (IDPs)[J]. Chemical Reviews, 2014, 114(13): 6557-6560.
    [28] FUKUCHI S, HOSODA K, HOMMA K, GOJOBORI T, NISHIKAWA K. Binary classification of protein molecules into intrinsically disordered and ordered segments[J]. BMC Structural Biology, 2011, 11: 29.
    [29] ZHANG X, WANG ZK, LI Z, SHAIK S, WANG BJ. [4Fe–4S]-mediated proton-coupled electron transfer enables the efficient degradation of chloroalkenes by reductive dehalogenases[J]. ACS Catalysis, 2023, 13(2): 1173-1185.
    [30] ZHANG SW, WEN W, XIA XH, OUYANG W, MAI BX, ADRIAN L, SCHÜÜRMANN G. Insight into the mechanism underlying Dehalococcoides mccartyi strain CBDB1-mediated B12-dependent aromatic reductive dehalogenation[J]. Environmental Science & Technology, 2023, 57(29): 10773-10781.
    [31] JUGDER BE, ERTAN H, LEE M, MANEFIELD M, MARQUIS CP. Reductive dehalogenases come of age in biological destruction of organohalides[J]. Trends in Biotechnology, 2015, 33(10): 595-610.
    [32] THEILLET FX, BINOLFI A, FREMBGEN-KESNER T, HINGORANI K, SARKAR M, KYNE C, LI CG, CROWLEY PB, GIERASCH L, PIELAK GJ, ELCOCK AH, GERSHENSON A, SELENKO P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs)[J]. Chemical Reviews, 2014, 114(13): 6661-6714.
    [33] CUEVAS-VELAZQUEZ CL, VELLOSILLO T, GUADALUPE K, SCHMIDT HB, YU F, MOSES D, BROPHY JAN, COSIO-ACOSTA D, DAS A, WANG LX, JONES AM, COVARRUBIAS AA, SUKENIK S, DINNENY JR. Intrinsically disordered protein biosensor tracks the physical-chemi
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

廖恒毅,王旭昊,崔逸儒,李晓翠,王红岩,侯贺磊,王晶晶,李秀颖,杨毅. 还原性脱卤酶的生物信息学分析[J]. 微生物学通报, 2024, 51(12): 5105-5120

复制
分享
文章指标
  • 点击次数:64
  • 下载次数: 120
  • HTML阅读次数: 148
  • 引用次数: 0
历史
  • 收稿日期:2024-06-30
  • 录用日期:2024-12-03
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码