科微学术

微生物学通报

攀西地区玉米根际耐旱放线菌多样性及促生特性分析
作者:
基金项目:

四川省烟草公司凉山州公司项目(SCYC202104);四川省重点研发计划(2020YFN0100)


Diversity and plant growth-promoting characteristics of drought-tolerant actinomycetes in rhizosphere of maize in Panxi Plateau, China
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】 植物根际促生菌能加速根际土壤的营养元素循环,改善土壤微生物群落结构,提高土壤肥力。【目的】 认识攀西地区玉米根际耐旱放线菌的多样性,同时筛选促生耐旱放线菌。【方法】 以攀西地区烟草-玉米轮作田中玉米根际土为研究材料分离筛选耐旱放线菌,运用BOXA1R聚类分析和16S rRNA基因测序技术分析攀西地区耐旱放线菌多样性并鉴定明确其系统发育地位,测定其产1-氨基环丙烷-1-羧酸(1-amino-1-cyclopropanecarboxylic acid, ACC)脱氨酶、产铁载体、降解纤维素、溶磷能力,以及抑制病原菌的能力,筛选出高效促生耐旱菌株进行玉米幼苗干旱促生试验。【结果】 共分离筛选得到31株耐旱放线菌,BOXA1R聚类分析得到的31株耐旱放线菌分别属于链霉菌属(Streptomyces)、类诺卡氏菌属(Nocardioides)、冢村氏菌属(Tsukamurella)、戈登氏菌属(Gordonia)和拟无枝酸菌属(Amycolatopsis),其中链霉菌属为优势属。31株促生耐旱放线菌中,25.80%具有产铁载体能力,32.25%具有溶磷能力,9.68%具有纤维素降解能力,74.19%具有产ACC脱氨酶能力。抑菌试验表明,菌株SICAU-37和SICAU-70对3种病原真菌稻瘟病菌(Magnaporthe oryzae)、烟草疫霉(Phytophthora nicotianae)和玉米尾孢菌(Cercospora zeina)均有抑制作用,抑菌直径/菌落直径(HD/CD)均在2以上。综上,菌株SICAU-37和SICAU-70促生、抑菌性能突出,筛选为进行干旱促生试验的菌株。经鉴定这2株菌分别为耐酪酸冢村菌(Tsukamurella tyrosinosolvens)和石斛拟无枝酸菌(Amycolatopsis dendrobii)。在干旱条件下,菌株SICAU-70能有效促进玉米幼苗的生长,可使株高和地上部鲜重提高9.44%和33.42%。【结论】 攀西地区烟草-玉米轮作田中玉米根际存在较为丰富多样的促生耐旱放线菌,具有潜在的应用价值。

    Abstract:

    [Background] Plant growth-promoting rhizobacteria can accelerate nutrient cycling in the soil and improve the structure of soil microbial communities to enhance soil fertility. [Objective] To reveal the diversity of drought-tolerant actinomycetes in the rhizosphere of maize in Panxi Plateau, China and screen out plant growth-promoting drought-tolerant actinomycetes. [Methods] Drought-tolerant actinomycetes were isolated and screened from the rhizosphere soil of maize in the field with tobacco-maize rotation in Panxi Plateau, China. BOXA1R cluster analysis was performed to assess the diversity of drought-tolerant actinomycetes, and 16S rRNA gene sequencing was employed to determine their phylogenetic positions. The abilities of the isolates to produce ACC deaminase and siderophores, degrade cellulose, solubilize phosphorus, and inhibit pathogens were evaluated. The drought-tolerant strains capable of efficiently promoting plant growth were selected for drought stress experiments on maize seedlings. [Results] A total of 31 strains of drought-tolerant actinomycetes were isolated and identified. BOXA1R cluster analysis revealed that these strains belonged to Streptomyces, Nocardioides, Tsukamurella, Gordonia, and Amycolatopsis, among which Streptomyces was the dominant genus. Among the 31 isolates, 25.80%, 32.25%, 9.68%, and 74.19% could produce siderophores, solubilize phosphorus, degrade cellulose, and produce ACC deaminase, respectively. Strains SICAU-37 and SICAU-70 exhibited inhibitory effects on the pathogenic fungi Magnaporthe oryzae, Phytophthora nicotianae, and Cercospora zeina, with the ratios of the inhibitory zone diameter to the colony diameter being greater than 2 against all the three fungal species. Notably, strains SICAU-37 and SICAU-70 with prominent plant growth-promoting and antifungal properties were selected for drought stress experiments. Upon identification, these two strains were determined to be Tsukamurella tyrosinosolvens and Amycolatopsis dendrobii, respectively. Under drought conditions, SICAU-70 effectively promoted the growth of maize seedlings, increasing the plant height and fresh shoot weight by 9.44% and 33.42%, respectively. [Conclusion] The fields with tobacco-maize rotation in Panxi Plateau harbor diverse and rich plant growth-promoting drought-tolerant actinomycetes, which have application potential.

    参考文献
    [1] Wang ZL, Li J, Lai CG, Wang RY, Chen XH, Lian YQ. Drying tendency dominating the global grain production area[J]. Global Food Security, 2018, 16: 138-149.
    [2] Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production[J]. Nature, 2016, 529(7584): 84-87.
    [3] 马廷臣, 余蓉蓉, 陈荣军, 曾汉来, 张端品. PEG-6000模拟干旱对水稻幼苗期根系的影响[J]. 中国生态农业学报, 2010, 18(6): 1206-1211. MA TC, YU RR, CHEN RJ, ZENG HL, ZHANG DP. Effect of drought stress simulated with PEG-6000 on root system in rice seedling[J]. Chinese Journal of Ecological Agriculture, 2010, 18(6): 1206-1211(in Chinese).
    [4] Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1): 47-56.
    [5] 陈俊芳, 吴宪, 杨佳绒, 刘啸林, 刘宇. 全球气候变化下干旱及复水对植物和土壤微生物的影响: 进展与展望[J]. 生态学杂志, 2023, 42(12): 3038-3049. CHEN JF, WU X, YANG JR, LIU XL, LIU Y. Effects of drought and rewatering on plants and soil microorganisms under climate change: review and perspectives[J]. Journal of Ecology, 2023, 42(12): 3038-3049(in Chinese).
    [6] Weselowski B, Nathoo N, Eastman AW, Macdonald J, Yuan ZC. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production[J]. BMC Microbiology, 2016, 16(1): 244.
    [7] Rashad YM, Al-Askar AA, Ghoneem KM, Saber Wia, Hafez EE. Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato[J]. Phytoparasitica, 2017, 45(2): 227-237.
    [8] 刘方春, 马海林, 刘丙花, 井大炜, 彭琳, 刘幸红, 杜振宇. 持续干旱下接种PGPR对核桃苗抗氧化系统的影响[J]. 西北林学院学报, 2023, 38(5): 73-78. LIU FC, MA HL, LIU BH, JING DW, PENG L, LIU XH, DU ZY. Effects of PGPR on the antioxidant system in the leaves of Juglans regia seedlings under continuous drought stress[J]. Journal of Northwest Forestry University, 2023, 38(5): 73-78(in Chinese).
    [9] 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. WANG Q, HU Z, FU W, LI GZ, HAO L. Regulation of Burkholderia sp. GD17 on the drought tolerance of cucumber seedlings[J]. Biotechnology Bulletin, 2023, 39(3): 163-175(in Chinese).
    [10] Thumar JT, Dhulia K, Singh SP. Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8[J]. World Journal of Microbiology and Biotechnology, 2010, 26(11): 2081-2087.
    [11] Cao SM, Yang F, Zhang HH, Wang QM, Xu GG, Zhu BS, Wu CX. Physiological and transcriptome profiling analyses reveal important roles of Streptomyces rochei D74 in improving drought tolerance of Puccinellia distans (Jacq.) Parl[J]. Environmental and Experimental Botany, 2023, 207: 105204.
    [12] Niu SQ, Gao Y, Zi HX, Liu Y, Liu XM, Xiong XQ, Yao QQ, Qin ZW, Chen N, Guo L, Yang YZ, Qin P, Lin JZ, Zhu YH. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism[J]. The Crop Journal, 2022, 10(2): 375-386.
    [13] 任明霞, 李静, 艾加敏, 柳晓东, 姜影影, 邓振山. 白刺花根瘤中分离细菌的物种多样性及其促生效应[J]. 微生物学报, 2024, 64(8): 2940-2954. REN MX, LI J, AI JM, LIU XD, JIANG YY, DENG ZS. Species diversity and plant growth-promoting effects of bacteria isolated from the root nodules of Sophora davidii[J]. Acta Microbiologica Sinica, 2024, 64(8): 2940-2954(in Chinese).
    [14] 胡桑源, 李光裕, 鲁泽宇, 玉苏普喀迪尔·孜米尼, 朱天奇, 黄轶男, 许岳飞, 刘铁芫. 高羊茅根际耐旱促生菌的分离鉴定及其促生作用[J]. 草业科学, 2024, 41(11): 2576-2593. HU SY, LI GY, LU ZY, YUSUPUKADIER Z, ZHU TQ, HUANG YN, XU YF, LIU TY. Isolation and Identification of drought-tolerant plant growth promoting Rhizobacteria from Tall Fescue and their growth promoting effects[J]. Pratacultural Science, 2024, 41(11): 2576-2593(in Chinese).
    [15] 卿文静. 攀西地区生态环境问题及其对策研究[J]. 现代农业科学, 2008(9): 66-67, 84. QING WJ. Study on Eco-environmental problems and its countermeasures in Pan-xi region[J]. Modern Agricultural Science and Technology, 2008(9): 66-67, 84(in Chinese).
    [16] 蔡信之, 黄君红. 微生物学实验[M]. 4版. 北京: 科学出版社, 2019. CAI XZ, HUANG JH. Experiments in Microbiology[M]. 4th ed. Beijing: Science Press, 2019(in Chinese).
    [17] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008. LI ZG, LUO YM, TENG Y. Research method of soil and environmental microorganisms[M]. Beijing: Science Press, 2008(in Chinese).
    [18] 李静, 张瀚能, 赵翀,张金羽, 张琪, 张靖莹, 刘茂柯, 陈强, 赵珂. 高效纤维素降解菌分离筛选、复合菌系构建及秸秆降解效果分析[J]. 应用与环境生物学报, 2016, 22(4): 689-696. LI J, ZHANG HN, ZHAO C, ZHANG JY, ZHANG Q, ZHANG JY, LIU MK, CHEN Q, ZHAO K. Isolation and screening of cellulose decomposing microbe and the straw decomposing effect of complex microbial system[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 689-696(in Chinese).
    [19] Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia Plantarum, 2003, 118(1): 10-15.
    [20] 李菲, 李喆, 黄媛林, 潘信利, 黄庶识. 角果木树皮来源放线菌多样性及生物活性初探[J]. 中国抗生素杂志, 2021, 46(9): 845-853. LI F, LI Z, HUANG YL, PAN XL, HUANG SS. Primary study on biodiversity and biological activity of actinomycetes isolated from the barks of Ceriops tagal[J]. Chinese Journal of Antibiotics, 2021, 46(9): 845-853(in Chinese).
    [21] 申枚灵, 赵翀, 廖萍, 李静, 程雪芬, 李成成, 张琴, 李艳宾, 张利莉, 赵珂. 塔里木盆地光果甘草内生放线菌的分离鉴定及抗逆、促生特性[J]. 草业科学, 2018, 35(7): 1624-1633. SHEN ML, ZHAO C, LIAO P, LI J, CHENG XF, LI CC, ZHANG Q, LI YB, ZHANG LL, ZHAO K. The isolation and identification of endophytic Actinobacteria from Glycyrrhiza glabra in the Tarim basin and their stress resistance and ability to promote plant growth[J]. Pratacultural Science, 2018, 35(7): 1624-1633(in Chinese).
    [22] Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic Acids Research, 1991, 19(24): 6823-6831.
    [23] Zachow C, Berg C, Müller H, Meincke R, Komon-Zelazowska M, Druzhinina IS, Kubicek CP, Berg G. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors[J]. The ISME Journal, 2009, 3(1): 79-92.
    [24] 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. MAN J, TANG B, DENG B, LI JH, HE YJ, ZHANG JL. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis[J]. Acta Prataculturae Sinica, 2021, 30(1): 59-71(in Chinese).
    [25] 陈欢, 史子浩, 吴春会, 李秋凤, 于晓梦, 徐领, 贾海阔, 刘震灵, 王明亚. 不同来源纤维素降解菌的筛选、鉴定及产酶能力的比较[J]. 草地学报, 2024, 32(4): 1252-1258. CHEN H, SHI ZH, WU CH, LI QF, YU XM, XU L, JIA HK, LIU ZL, WANG MY. Screening, identification and comparison of enzyme production capacity screening, identification and comparison of enzyme production capacity[J]. Acta Agrestia Sinica, 2024, 32(4): 1252-1258(in Chinese).
    [26] 王晶, 李波, 黎柳萍, 韦靖, 姜明国, 周燕. 广西亚热带植物根际促生菌的筛选、鉴定及促生作用研究[J]. 南京农业大学学报, 2024, 47(3): 468-476. WANG J, LI B, LI L, WEI J, JIANG MG, ZHOU Y. Screening and identification of plant growth-promoting rhizobacteria and its growth promoting effects in subtropical region in Guangxi[J]. Journal of Nanjing Agricultural University, 2024, 47(3): 468-476(in Chinese).
    [27] 洪越, 周贵兰, 刘瑞, 路振宗, 袁雪, 王晔, 李润枝. 外源褪黑素对干旱胁迫下不同抗旱型玉米幼苗生理特性的影响[J]. 北京农学院学报, 2024, 39(3): 39-46. HONG Y, ZHOU GL, LIU R, LU ZZ, YUAN X, WANG Y, LI RZ. Effects of exogenous melatonin on physiological characteristics of different drought- resistant maize seedlings under drought stress[J]. Journal of Beijing University of Agriculture, 2024, 39(3): 39-46(in Chinese).
    [28] 吉泽, 肖关丽, 陈斌, 李俊逸, 姚遥, 祝春月, 杨金睿. 干旱胁迫对马铃薯叶片内生细菌组成和结构的影响[J]. 华中农业大学学报, 2024, 43(1): 79-88. JI Z, XIAO GL, CHEN B, LI JY, YAO Y, ZHU CY, YANG JR. Effect of drought stress on composition and structure of endosymbiotic bacteria in potato leaves[J]. Journal of Huazhong Agricultural University, 2024, 43(1): 79-88(in Chinese).
    [29] 王艳成, 张纪月, 冯帅奇, 梁雪, 张振, 董微巍, 姬文秀. 外源促生菌联合有机肥对干旱胁迫下参地土壤性状及人参抗逆性影响[J]. 中国农业科技导报, 2023, 25(8): 196-202. WANG YC, ZHANG JY, FENG SQ, LIANG X, ZHANG Z, DONG WW, JI WX. Effects of exogenous PGPR combined with organic fertilizers on soil properties and stress resistance of ginseng under drought stress[J]. Journal of Agricultural Science and Technology, 2023, 25(8): 196-202(in Chinese).
    [30] Su XL, Su X, Zhou GY, Du ZG, Yang SC, Ni MY, Qin H, Huang ZQ, Zhou XH, Deng J. Drought accelerated recalcitrant carbon loss by changing soil aggregation and microbial communities in a subtropical forest[J]. Soil Biology and Biochemistry, 2020, 148: 107898.
    [31] Schimel J, Balser TC, Wallenstein M. microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007, 88(6): 1386-1394.
    [32] 李佳慧, 汶瑛, 田茂, 刘光琇, 张威, 章高森, 薛林贵. 库姆塔格沙漠可培养放线菌多样性及抑菌潜力评估[J]. 中国抗生素杂志, 2024, 49(4): 438-447. LI JH, WEN Y, TIAN M, LIU GX, ZHANG W, ZHANG GS, XUE LG. Diversity of culturable actinomycetes and evaluation of their bacteriostatic potential in Kumtag desert[J]. Chinese Journal of Antibiotics, 2024, 49(4): 438-447(in Chinese).
    [33] Iliĉ SB, Konstantinoviĉ SS, Todoroviĉ ZB, Laziĉ ML, Veljkoviĉ VB, Jokoviĉ N, Radovanoviĉ BC. Characterization and antimicrobial activity of the bioactive metabolites in streptomycete isolates[J]. Mikrobiologiia, 2007, 76(4): 480-487.
    [34] Barka EA, Vatsa P, Sanchez L, Gaveau- Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, physiology, and natural products of Actinobacteria[J]. Microbiology and Molecular Biology Reviews, 2016, 80(1): 1-43.
    [35] D’Angeli IM, Serrazanetti DI, Montanari C, Vannini L, Gardini F, de Waele J. Geochemistry and microbial diversity of cave waters in the gypsum Karst aquifers of Emilia Romagna region, Italy[J]. Science of the Total Environment, 2017, 598: 538-552.
    [36] 胡应平, 林冬梅, 胡弘正, 吴颖, 林佳丽, 林占嬉, 刘斌. 一株旱稻联合固氮菌株的分离鉴定及促生作用[J]. 西南农业学报, 2024, 37(4): 780-788. HU YP, LIN DM, HU HZ, WU Y, LIN JL, LIN ZX, LIU B. Isolation, identification and growth-promoting characteristics of endophytic nitrogen-fixing bacteria in upland rice roots[J]. Southwest China Journal of Agricultural Sciences, 2024, 37(4): 780-788(in Chinese).
    [37] 李鑫, 张美珍, 郑翘楚, 刘权, 黄玉兰, 殷奎德. 盐碱胁迫下产ACC脱氨酶促生菌对绿豆插条生根的作用[J]. 河南农业科学, 2023, 52(7): 52-59. LI X, ZHANG MZ, ZHENG QC, LIU Q, HUANG YL, YIN KD. Effect of ACC deaminase-producing bacteria on rooting of mung bean cuttings under saline-alkali stress[J]. Journal of Henan Agricultural Sciences, 2023, 52(7): 52-59(in Chinese).
    [38] Long CM, Yang TT, Han YJ, Han LZ. Effects of Tsukamurella tyrosinosolvens P9 on growth, physiology and antioxdant enzyme of peanut under drought stress and after re-watering[J]. Biocell, 2023, 47(6): 1417-1430.
    [39] Lay CY, Bell TH, Hamel C, Harker KN, Mohr R, Greer CW, Yergeau É, St-Arnaud M. Canola root-associated microbiomes in the Canadian prairies[J]. Frontiers in Microbiology, 2018, 9: 1188.
    [40] 李晓婷. 燕麦内生真菌多样性及其抗旱促生长特性研究[D]. 呼和浩特: 内蒙古农业大学博士学位论文, 2023. LI XT. Study on the diversity of endophytic fungi in Oat and The drought-resistant and growth-promoting characteristics[D]. Hohhot: Doctoral Dissertation of Inner Mongolia Agricultural University, 2023(in Chinese).
    [41] 廖醒, 覃凌薇, 吴志培, 马道承, 王凌晖. 外源NaHS对NaCl胁迫下赤苍藤幼苗光合及生理特性的影响[J]. 广西林业科学, 2023, 52(3): 324-330. LIAO X, QIN LW, WU ZP, MA DC, WANG LH. Effects of exogenous NaHS on photosynthetic and physiological characteristics of Erythropalum scandens seedlings under NaCl stress[J]. Guangxi Forestry Science, 2023, 52(3): 324-330(in Chinese).
    [42] Bae HH, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao[J]. Journal of Experimental Botany, 2009, 60(11): 3279-3295.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李思思,秦磊涛,陈玉蓝,刘东阳,陈强,王勇,辜运富. 攀西地区玉米根际耐旱放线菌多样性及促生特性分析[J]. 微生物学通报, 2025, 52(3): 1193-1205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-22
  • 录用日期:2024-10-18
  • 在线发布日期: 2025-03-19
文章二维码