科微学术

微生物学通报

四川三台县麦冬//玉米间作体系根际微生物多样性及功能分析
作者:
基金项目:

四川省自然科学基金(2023NSFSC1262);国家现代农业产业技术体系四川道地中药材创新团队专项资金(SCCXTD-2020-19);国家中药材产业技术体系成都综合试验站项目(CARS-21-21);四川省财政自主创新专项(2022ZZCX078)


Biodiversity and functions of rhizosphere microbiome in the Ophiopogon japonicus-maize intercropping system in Santai County, Sichuan Province
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】麦冬//玉米间作是麦冬产区最主要的种植模式,解析该模式根际土壤微生物群落及功能,为利用栽培措施改良土壤生态环境及从土壤微生态学角度揭示麦冬//玉米间作生态种植机理提供理论依据。【目的】明确麦冬//玉米间作体系下根际土壤微生物群落结构及功能。【方法】分别采集单作与间作麦冬、玉米根际土壤,采用Illumina-NovaSeq高通量测序技术对根际土壤中微生物群落结构和功能进行分析。【结果】间作显著提高麦冬株高及产量,而对玉米则影响较小。间作条件下,麦冬、玉米根际土壤细菌多样性与单作无显著差异,但麦冬根际真菌多样性提高,玉米根际真菌多样性降低。与单作相比,间作使麦冬根际放线菌门(Actinobacteriota)、被孢霉门(Mortierellomycota)、Xenomyrothecium和赤霉属(Gibberella)的相对丰度降低,而富集了子囊菌门(Ascomycota)、毛霉菌门(Mucoromycota)、拟棘壳孢属(Pyrenochaetopsis)、根霉属(Rhizopus)、镰刀菌属(Fusarium)、链格孢属(Alternaria)、溶杆菌属(Lysobacter)和罗河杆菌属(Rhodanobacter)等。间作使玉米根际子囊菌门、脱硫杆菌门(Desulfobacterota)、粘菌门(Myxococcota)、小鬼伞属(Coprinellus)和镰刀菌属的相对丰度增加,枝孢菌科(Cladosporiaceae)等10个科、Xenomyrothecium和赤霉属的数量则显著减少。在3种KEGG水平上,单、间作麦冬和玉米根际微生物各代谢通路的相对丰度均无显著性差异。间作使植物病原菌、土壤腐生生物和木质腐生生物共存功能群显著富集在麦冬和玉米根际,间作显著降低了寄生真菌功能群在玉米根际的相对丰度,而在麦冬根际中则显著提高。此外,间作条件下,植物病原菌功能群相对丰度在玉米根际显著降低,在麦冬根际则显著提高。【结论】麦冬//玉米间作促进麦冬生长,提高麦冬产量,对麦冬、玉米根际细菌群落结构和功能的影响较小,大部分菌属均无显著性差异,而真菌群落结构和功能则受种间互作的影响较大,大多数菌属表现出趋同和趋异显著性变化。

    Abstract:

    [Background] Ophiopogon japonicus-maize intercropping is the main planting mode in Ophiopogonis Radix producing areas. Revealing the microbiome structure and functional changes in the rhizosphere soil of this mode is crucial for ecological intercropping. [Objective] To investigate the diversity and functions of rhizosphere microbiome in the O. japonicus-maize intercropping system. [Methods] We employed Illumina-NovaSeq high-throughput sequencing of the 16S rRNA gene of bacteria and the ITS rDNA of fungi to study the microbiome structure and functions in the rhizosphere soil samples of the O. japonicus-maize intercropping system and monoculture systems. [Results] Intercropping significantly increased the plant height and yield of O. japonicus but had little effect on maize. The bacterial diversity in rhizosphere soil of both plants had no significant difference between intercropping and monoculture patterns. However, compared with monoculture, intercropping increased the fungal diversity in the rhizosphere soil of O. japonicus and decreased the fungal diversity in the rhizosphere soil of maize. Compared with monoculture, intercropping reduced the relative abundance of Actinobacteriota, Mortierellomycota, Xenomyrothecium, and Gibberella but enriched Ascomycota, Mucoromycota, Pyrenochaetopsis, Rhizopus, Fusarium, Alternaria, Lysobacter, and Rhodanobacter in the rhizosphere of O. japonicus. In the rhizosphere of maize, intercropping increased the relative abundance of Ascomycota, Desulfobacterota, Myxococcota, Coprinellus, and Fusarium, while decreasing the relative abundance of ten families including Cladosporiaceae and two genera of Xenomyrothecium and Gibberella. No significant differences were observed in the relative abundance of KEGG pathways of rhizosphere microbiome between monoculture and intercropping modes. Intercropping significantly increased the relative abundance of plant pathogens, soil saprotrophs, and wood saprotrophs in the rhizosphere of both O. japonicus and maize. However, it decreased the relative abundance of fungal parasites in the rhizosphere of maize while increasing that in the rhizosphere of O. japonicus. Furthermore, intercropping reduced the relative abundance of plant pathogens in the rhizosphere of maize but significantly increased that in the rhizosphere of O. japonicus. [Conclusion] The intercropping of O. japonicus and maize promotes the growth and increases the yield of O. japonicus. It has mild effects on the structure and functions of rhizosphere bacterial community of O. japonicus and maize, and most bacterial genera displayed no significant difference between the two cropping modes. However, the structure and functions of fungal community were greatly influenced by intercropping, and most fungal genera showed significant convergence or divergence.

    参考文献
    [1] 国家药典委员会.中华人民共和国药典: 一部[M]. 北京: 中国医药科技出版社, 2020: 162-163. State Pharmacopoeia Committee. The People’s Republic of China Pharmacopoeia: Part I[M]. Beijing: The Medicine Science and Technology Press of China, 2020: 162-163(in Chinese).
    [2] 刘霞, 林韵涵, 谢彩香, 曾凡琳, 马晓冲, 孙伟, 屠鹏飞, 陈士林. 道地药材川麦冬和浙麦冬的生态遗传分化[J]. 中国实验方剂学杂志, 2017, 23(17): 27-33. LIU X, LIN YH, XIE CX, ZENG FL, MA XC, SUN W, TU PF, CHEN SL. Ecogenetic and differentiation of genuine medicinal materials: Ophiopogonis Radix in Sichuan and Zhejiang Province[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(17): 27-33(in Chinese).
    [3] 吴发明, 刘莎, 李敏. 四川麦冬产业现状与发展前景分析[J]. 北方园艺, 2019(17): 151-157. WU FM, LIU S, LI M. Current situation and development prospect of industry of Ophiopogon japonicus in Sichuan[J]. Northern Horticulture, 2019(17): 151-157(in Chinese).
    [4] 郭兰萍, 王铁霖, 杨婉珍, 周良云, 陈乃富, 韩邦兴, 黄璐琦. 生态农业: 中药农业的必由之路[J]. 中国中药杂志, 2017, 42(2): 231-238. GUO LP, WANG TL, YANG WZ, ZHOU LY, CEHN NF, HAN BX, HUANG LQ. Ecological agriculture: future of agriculture for Chinese material medica[J]. China Journal of Chinese Materia Medica, 2017, 42(2): 231-238(in Chinese).
    [5] 万修福, 王升, 康传志, 吕朝耕, 郭兰萍, 黄璐琦. “十四五”期间中药材产业趋势与发展建议[J]. 中国中药杂志, 2022, 47(5): 1144-1152. WAN XF, WANG S, KANG CZ, LYU CG, GUO LP, HUANG LQ. Chinese medicinal materials industry during the 14th Five-Year Plan period: trends and development suggestions[J]. China Journal of Chinese Materia Medica, 2022, 47(5): 1144-1152(in Chinese).
    [6] YANG HW, LI J, XIAO YH, GU YB, LIU HW, LIANG YL, LIU XD, HU J, MENG DL, YIN HQ. An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease[J]. Frontiers in Microbiology, 2017, 8: 2179.
    [7] de VRIES FT, GRIFFITHS RI, KNIGHT CG, NICOLITCH O, WILLIAMS A. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 2020, 368(6488): 270-274.
    [8] SHI XL, ZHAO XH, REN JY, DONG JL, ZHANG H, DONG QQ, JIANG CJ, ZHONG C, ZHOU YF, YU HQ. Influence of peanut, sorghum, and soil salinity on microbial community composition in interspecific interaction zone[J]. Frontiers in Microbiology, 2021, 12: 678250.
    [9] ASLAM MM, OKAL EJ, IDRIS AL, QIAN Z, XU WF, KARANJA JK, WANI SH, YUAN W. Rhizosphere microbiomes can regulate plant drought tolerance[J]. Pedosphere, 2022, 32(1): 61-74.
    [10] 顾嘉诚, 王文敏, 王振, 李鲁华, 蒋贵菊, 王家平, 程志博. 玉米/大豆间作对根际土壤磷素生物有效性和微生物群落结构的影响[J]. 应用生态学报, 2023, 34(11): 3030-3038. GU JC, WANG WM, WANG Z, LI LH, JIANG GJ, WANG JP, CHENG ZB. Effects of maize and soybean intercropping on soil phosphorus bioavailability and microbial community structure in rhizosphere[J]. Chinese Journal of Applied Ecology, 2023, 34(11): 3030-3038(in Chinese).
    [11] ZHANG R, LI XC, QU JX, ZHANG DD, CAO LX, QIN XM, LI ZY. Intercropping with maize and sorghum-induced saikosaponin accumulation in Bupleurum chinense DC. by liquid chromatography-mass spectrometry-based metabolomics[J]. Journal of Mass Spectrometry, 2024, 59(6): e5035.
    [12] LIAO ZY, CHEN QH, LI JX, WEI L, WU JL, WANG X, LIU Q, MIAO YH, LIU DH. Influence of Chrysanthemum morifolium-maize intercropping pattern on yield, quality, soil condition, and rhizosphere soil microbial communities of C. morifolium[J]. Frontiers in Plant Science, 2024, 15: 1383477.
    [13] KUMAR R, KUMAR N, SRIVASTAVA P, ARYA A, RASOOL K, MANISHA. Role of allelopathy in plant disease management[J]. International Journal of Environment and Climate Change, 2023, 13(11): 1858-1870.
    [14] ZHANG HX, SHI W, ALI S, CHANG SH, JIA QM, HOU FJ. Legume/maize intercropping and N application for improved yield, quality, water and N utilization for forage production[J]. Agronomy, 2022, 12(8): 1777.
    [15] 段永华, 管必莲, 左丽娟, 李双艳, 邓成忠, 李晓亮, 杨进成, 张钟. 不同鲜食玉米品种与菜用大豆间作产量及经济效益分析[J]. 大豆科技, 2024(2): 19-24. DUAN YH, GUAN BL, ZUO LJ, LI SY, DENG CZ, LI XL, YANG JC, ZHANG Z. Analysis on yield and economic benefits of intercropping between fresh corn and new edamame[J]. Soybean Science & Technology, 2024(2): 19-24(in Chinese).
    [16] ZHANG SB, JIN YX, ZENG ZY, LIU ZZ, FU ZW. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome[J]. Chemical Research in Toxicology, 2015, 28(10): 2000-2009.
    [17] 肖慧琳, 王建萍, 杨业凯, 郑秋玲, 徐维华, 宫磊, 宋志忠, 唐美玲, 刘万好. 基于高通量测序技术的阳光玫瑰不同砧木根际微生物多样性研究[J]. 果树学报, 2022, 39(9): 1639-1648. XIAO HL, WANG JP, YANG YK, ZHENG QL, XU WH, GONG L, SONG ZZ, TANG ML, LIU WH. Analysis of microbial diversity in rhizosphere soil of Shine Muscat grape on different rootstocks using high-throughput sequencing[J]. Journal of Fruit Science, 2022, 39(9): 1639-1648(in Chinese).
    [18] LI MJ, SHAO DT, ZHOU JC, GU JH, QIN JJ, CHEN W, WEI WQ. Signatures within esophageal microbiota with progression of esophageal squamous cell carcinoma[J]. Chinese Journal of Cancer Research, 2020, 32(6): 755-767.
    [19] CALLAHAN BJ, McMURDIE PJ, HOLMES SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis[J]. The ISME Journal, 2017, 11(12): 2639-2643.
    [20] JIANG P, WANG YZ, ZHANG YP, FEI JC, RONG XM, PENG JW, YIN LC, ZHOU X, LUO GW. Enhanced productivity of maize through intercropping is associated with community composition, core species, and network complexity of abundant microbiota in rhizosphere soil[J]. Geoderma, 2024, 442: 116786.
    [21] CAO XN, LIU SC, WANG JJ, WANG HG, CHEN L, TIAN X, ZHANG LJ, CHANG JW, WANG L, MU ZX, QIAO ZJ. Soil bacterial diversity changes in different broomcorn millet intercropping systems[J]. Journal of Basic Microbiology, 2017, 57(12): 989-997.
    [22] CHADFIELD VGA, HARTLEY SE, REDEKER KR. Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases[J]. The New Phytologist, 2022, 235(6): 2393-2405.
    [23] 吕柏辰, 孙海, 钱佳奇, 梁浩, 朱家鹏, 张强胜, 邵财, 张亚玉. 药用植物根系分泌物与根际微生物相互作用及其在中药材生态种植中的应用[J]. 中国中药杂志, 2024, 49(8): 2128-2137. LYU BC, SUN H, QIAN JQ, LIANG H, ZHU JP, ZHANG QS, SHAO C, ZHANG YY. Interaction between root exudates of medicinal plants and rhizosphere microorganisms and its application in ecological planting of Chinese medicinal materials[J]. China Journal of Chinese Materia Medica, 2024, 49(8): 2128-2137(in Chinese).
    [24] 王香生, 连延浩, 郭辉, 任永哲, 辛泽毓, 林同保, 王志强. 小麦红花间作系统根际微生物群落结构及功能分析[J]. 中国生态农业学报(中英文), 2023, 31(4): 516-529. WANG XS, LIAN YH, GUO H, REN YZ, XIN ZY, LIN TB, WANG ZQ. Effects of wheat/safflower intercropping on rhizosphere microbial community function and structure[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 516-529(in Chinese).
    [25] 吴加香, 刘涛, 寸梦壵, 徐志勇, 罗曌, 字淑慧. 黄草乌间作玉米对其根际微生物群落多样性的影响[J]. 分子植物育种, 2024, 22(7): 2281-2289. WU JX, LIU T, CUN MZ, XU ZY, LUO Z, ZI SH. Effects of intercropping maize with Aconitum vilmorinianum Kom. on rhizosphere microbial community diversity[J]. Molecular Plant Breeding, 2024, 22(7): 2281-2289(in Chinese).
    [26] 石悦, 房永雨, 刘拴成, 穆俊祥, 于新超, 卜令超, 田牧野. 高丹草/黄芪间作对高丹草根际土壤微生物多样性的影响[J]. 中国草地学报, 2023, 45(12): 130-137. SHI Y, FANG YY, LIU SC, MU JX, YU XC, BU LC, TIAN MY. Effects of sorghum-sudangrass hybrid and Astragalus membranaceus intercropping on rhizosphere soil microbial community diversity[J]. Chinese Journal of Grassland, 2023, 45(12): 130-137(in Chinese).
    [27] 李巧玲, 肖忠, 任明波, 韩凤, 胡开治. 间作不同作物对栀子根际土壤微生态的影响[J]. 微生物学通报, 2021, 48(10): 3588-3602. LI QL, XIAO Z, REN MB, HAN F, HU KZ. Effect of Gardenia jasminoides Ellis with different intercropping crops on soil microecology[J]. Microbiology China, 2021, 48(10): 3588-3602(in Chinese).
    [28] BROECKLING CD, BROZ AK, BERGELSON J, MANTER DK, VIVANCO JM. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3): 738-744.
    [29] 章家恩, 高爱霞, 徐华勤, 罗明珠. 玉米/花生间作对土壤微生物和土壤养分状况的影响[J]. 应用生态学报, 2009, 20(7): 1597-1602. ZHANG JE, GAO AX, XU HQ, LUO MZ. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1597-1602(in Chinese).
    [30] 代真林, 汪娅婷, 姚秀英, 张晋豪, 王彦芳, 姚博, 魏兰芳, 姬广海. 玉米大豆间作模式对玉米根际土壤微生物群落特征、玉米产量及病害的影响[J]. 云南农业大学学报(自然科学), 2020, 35(5): 756-764. DAI ZL, WANG YT, YAO XY, ZHANG JH, WANG YF, YAO B, WEI LF, JI GH. Effects of maize/soybean intercropping on the microbial community characteristics of maize rhizosphere soil, maize yield and diseases[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(5): 756-764(in Chinese).
    [31] 罗娅婷, 崔现亮, 郑毅, 汤利. 不同品种小麦与蚕豆间作对蚕豆根际镰刀菌生长的影响[J]. 云南农业大学学报(自然科学), 2014, 29(3): 397-403. LUO YT, CUI XL, ZHENG Y, TANG L. Effects of intercropping between different wheat cultivars and faba bean on the growth of rhizosphere Fusarium spp.[J]. Journal of Yunnan Agricultural University (Natural Science), 2014, 29(3): 397-403(in Chinese).
    [32] 黄之远, 赵桂茹, 刘涛, 吴加香, 徐若, 寸梦壵, 字淑慧. 半夏玉米间作对根际微生物群落的影响[J]. 分子植物育种, 2022. https://kns.cnki.net/kcms/detail/46. 1068.S.20220704.1333.007.html. HUANG ZY, ZHAO GR, LIU T, WU JX, XU R, CUN MZ, ZI SH. Effects of intercropping Pinellia ternata with maize on rhizosphere microbial community[J]. Molecular Plant Breeding, 2022. https://kns.cnki.net/kcms/detail/ 46.1068.S.20220704.1333.007.html (in Chinese).
    [33] 常换换, 苏友波, 范茂攀, 赵吉霞, 王自林, 李永梅. 玉米间作大豆对根际微生物群落功能和结构的影响[J]. 云南农业大学学报(自然科学), 2022, 37(2): 336-343. CHANG HH, SU YB, FAN MP, ZHAO JX, WANG ZL, LI YM. Effects of maize and soybean intercropping on the function and structure of rhizosphere microbial community[J]. Journal of Yunnan Agricultural University (Natural Science), 2022, 37(2): 336-343(in Chinese).
    [34] 郑亚强, 张立敏, 杨进成, 杨坚, 高锐, 陈亮新, 董雪梅, 孙继红, 肖关丽, 李正跃, 陈斌. 甘蔗间作玉米对甘蔗根际微生物代谢功能多样性的影响[J]. 中国生态农业学报, 2016, 24(5): 618-627. ZHENG YQ, ZHANG LM, YANG JC, YANG J, GAO R, CHEN LX, DONG XM, SUN JH, XIAO GL, LI ZY, CHEN B. Effects of sugarcane and maize intercropping on sugarcane rhizosphere microbe metabolic function diversity[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 618-627(in Chinese).
    [35] WEN T, DING ZX, THOMASHOW LS, HALE L, YANG SD, XIE PH, LIU XY, WANG HQ, SHEN QR, YUAN J. Deciphering the mechanism of fungal pathogen-induced disease-suppressive soil[J]. The New Phytologist, 2023, 238(6): 2634-2650.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙小芳,曾华兰,刘勇,何炼,况再银,代顺冬,华丽霞,蒋秋平. 四川三台县麦冬//玉米间作体系根际微生物多样性及功能分析[J]. 微生物学通报, 2025, 52(1): 290-308

复制
分享
文章指标
  • 点击次数:73
  • 下载次数: 95
  • HTML阅读次数: 74
  • 引用次数: 0
历史
  • 收稿日期:2024-04-10
  • 录用日期:2024-05-30
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码