科微学术

微生物学通报

一种新谷氨酰胺转氨酶的发掘、纯化、酶学性质测定及重组表达
作者:
基金项目:

国家重点研发计划(2022YFD2101403)


Discovery, purification, enzymatic characterization, and recombinant expression of a novel transglutaminase
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】谷氨酰胺转氨酶(transglutaminase, EC 2.3.2.13)简称TG酶,能够催化谷氨酰胺残基的γ-羧酰胺基基团与赖氨酸残基的ε-氨基基团之间交联,形成异性肽键,从而改变蛋白质的构象和功能。目前TG酶已经广泛应用到食品、生物医药、纺织、皮革加工等领域。【目的】从天然茂原链霉菌中挖掘性能优异的TG酶,并将其在工业底盘菌株中重组表达以提高产量。【方法】通过发酵测定了一株茂原链霉菌(Streptomyces mobaraensis) CGMCC 4.266的TG酶生产能力。使用Capto S阳离子交换层析柱对该TG酶(TGe)进行纯化。通过测定TGe的最适pH和pH稳定性、最适温度和温度稳定性以及交联酪蛋白的能力来分析其酶学性质。将工业茂原链霉菌内源tg基因进行敲除构建Δtg,然后将tge基因在Δtg中重组表达。【结果】TGe最适pH值为5.0,在pH 4.0−10.0范围内保持较高的活性。最适反应温度为50 ℃,与商品化酶相当,在4−40 ℃范围内TGe稳定性较好,在40−65 ℃范围内TGe活性略优于商品化酶。酪蛋白交联实验表明,在50 ℃条件下,TGe交联能力明显优于商品化酶。tge在Δtg中重组表达,TGe产量显著提高可达6.3 U/mL,相较野生菌株提高162.5%,并且TGe催化活性不受影响。【结论】对天然茂原链霉菌中的TG酶进行挖掘表征,是获取性能更加优异TG酶的有效方式。异源TG酶在成熟工业菌株中成功表达为提高茂原链霉菌TG酶的产量提供了新策略。

    Abstract:

    [Background] Transglutaminase EC 2.3.2.13 (TGase) catalyzes cross-linking between the γ-carboxamido group of glutamine residues and the ε-amino group of lysine residues. This process leads to the formation of an isopeptide bond, which modulates the conformation and functions of proteins. TGases play a crucial role in food, pharmaceutical, textile, and leather processing industries. [Objective] To mine a high-performance TGase from natural Streptomyces mobaraensis and enhance the titer of this enzyme by recombinant expression in the industrial chassis. [Methods] The TGase production potential of S.mobaraensis (CGMCC 4.266) was evaluated by shake-flask fermentation. The TGase (TGe) was purified by Capto S cation exchange chromatography. The enzymatic properties including optimal pH, pH stability, optimal temperature, thermal stability, and cross-linking ability with casein were evaluated. We knocked out tg from industrial S. mobaraensisand obtained Δtg, in which tge was introduced and expressed. [Results] TGe showcased the optimal pH 5.0, with high activity within the range of pH 4.0–10.0. This enzyme achieved the highest activity at approximately 50 ℃, which was comparable to that of commercially available TGases. TGe exhibited good stability within 4–40 ℃, and its activity surpassed those of commercial TGases at 40–65 ℃. In addition, TGe demonstrated higher cross-linking ability with casein at 50 ℃ than commercial TGases. The recombinant expression of tge in Δtg increased the TGe titer (6.3 U/mL) by 162.5% compared with the wild-type strain, without compromising the catalytic activity of TGe. [Conclusion] High-performance TGases can be mined from natural S. mobaraensis. The heterologous expression of TGases in mature industrial strains gives a novel insight into enhancing the TGase titer of S.mobaraensis.

    参考文献
    [1] YANG PH, WANG XL, YE JC, RAO SQ, ZHOU JW, DU GC, LIU S. Enhanced thermostability and catalytic activity of Streptomyces mobaraenesis transglutaminase by rationally engineering its flexible regions[J]. Journal of Agricultural and Food Chemistry, 2023, 71(16): 6366-6375.
    [2] MIWA N. Innovation in the food industry using microbial transglutaminase: keys to success and future prospects[J]. Analytical Biochemistry, 2020, 597: 113638.
    [3] FATIMA SW, KHARE SK. Current insight and futuristic vistas of microbial transglutaminase in nutraceutical industry[J]. Microbiological Research, 2018, 215: 7-14.
    [4] AESCHLIMANN D, PAULSSON M. Transglutaminases: protein cross-linking enzymes in tissues and body fluids[J]. Thrombosis and Haemostasis, 1994, 71(4): 402-415.
    [5] TESFAW A, ASSEFA F. Applications of transglutaminase in textile, wool, and leather processing[J]. International Journal of Textile Science, 2014, 3: 64-69.
    [6] LIU Q, LIU L, LI J, ZHANG D, SUN J, DU G, CHEN J. Influence of microbial transglutaminase modified gelatin-sodium caseinate, as a filler, on the subjective mechanical and structural properties of leather[J]. Journal of the American Leather Chemists Association, 2011, 106(6): 200-207.
    [7] DUARTE L, MATTE CR, BIZARRO CV, AYUB MAZ. Review transglutaminases: part II—industrial applications in food, biotechnology, textiles and leather products[J]. World Journal of Microbiology and Biotechnology, 2019, 36(1): 11.
    [8] AESCHLIMANN D, PAULSSON M. Transglutaminases: protein cross-linking enzymes in tissues and body fluids[J]. Thrombosis and Haemostasis, 1994, 71(4): 402-415.
    [9] SIEKEVITZ P. Uptake of radioactive alanine in vitro into the proteins of rat liver fractions[J]. Journal of Biological Chemistry, 1952, 195(2): 549-565.
    [10] DEL DS, ALOISI I, PARROTTA L, CAI G. Cytoskeleton, transglutaminase and gametophytic self-incompatibility in the malinae (Rosaceae)[J]. International Journal of Molecular Sciences, 2019, 20(1): 209.
    [11] ANDO H, ADACHI M, UMEDA K, MATSUURA A, NONAKA M, UCHIO R, TANAKA H, MOTOKI M. Purification and characteristics of a novel transglutaminase derived from microorganisms[J]. Agricultural and Biological Chemistry, 1989, 53(10): 2613-2617.
    [12] SANTHI D, KALAIKANNAN A, MALAIRAJ P, PRABHU SA. Application of microbial transglutaminase in meat foods: a review[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(10): 2071-2076.
    [13] ZOTZEL J, KELLER P, FUCHSBAUER HL. Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease[J]. European Journal of Biochemistry, 2003, 270(15): 3214-3222.
    [14] ZHANG DX, WANG M, WU J, CUI L, DU GC, CHEN J. Two different proteases from Streptomyces hygroscopicus are involved in transglutaminase activation[J]. Journal of Agricultural and Food Chemistry, 2008, 56(21): 10261-10264.
    [15] CHICA RA, DOUCET N, PELLETIER JN. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design[J]. Current Opinion in Biotechnology, 2005, 16(4): 378-384.
    [16] WANG XL, DU JH, ZHAO BC, WANG HY, RAO SQ, DU GC, ZHOU JW, CHEN J, LIU S. Significantly improving the thermostability and catalytic efficiency of Streptomyces mobaraenesis transglutaminase through combined rational design[J]. Journal of Agricultural and Food Chemistry, 2021, 69(50): 15268-15278.
    [17] XUE T, ZHENG XH, SU XM, CHEN D, LIU K, YUAN X, LIN RH, HUANG LQ, HE WJ, ZHU JM, CHEN YQ. Directed evolution of the transglutaminase from Streptomyces mobaraensis and its enhanced expression in Escherichia coli[J]. Food Biotechnology, 2020, 34(1): 42-61.
    [18] SATO R, MINAMIHATA K, ARIYOSHI R, TANIGUCHI H, KAMIYA N. Recombinant production of active microbial transglutaminase in E. coli by using self-cleavable zymogen with mutated propeptide[J]. Protein Expression and Purification, 2020, 176: 105730.
    [19] LIU X, WANG H, WANG B, PAN L. High-level extracellular protein expression in Bacillus subtilis by optimizing strong promoters based on the transcriptome of Bacillus subtilis and Bacillus megaterium[J]. Protein Expression and Purification, 2018, 151: 72-77.
    [20] ÖZÇELIK AT, ERSÖZ F, İNAN M. Extracellular production of the recombinant bacterial transglutaminase in Pichia pastoris[J]. Protein Expression and Purification, 2019, 159: 83-90.
    [21] TAGUCHI S, ARAKAWA K, YOKOYAMA K, TAKEHANA S, TAKAGI H, MOMOSE H. Overexpression and purification of microbial pro-transglutaminase from Streptomyces cinnamoneum and in vitro processing by Streptomyces albogriseolus proteases[J]. Journal of Bioscience and Bioengineering, 2002, 94(5): 478-481.
    [22] YANG HL, PAN L, LIN Y. Purification and on-column activation of a recombinant histidine-tagged pro-transglutaminase after soluble expression in Escherichia coli[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(11): 2531-2534.
    [23] YIN XQ, LI YY, ZHOU JW, RAO SQ, DU GC, CHEN J, LIU S. Enhanced production of transglutaminase in Streptomyces mobaraensis through random mutagenesis and site-directed genetic modification[J]. Journal of Agricultural and Food Chemistry, 2021, 69(10): 3144-3153.
    [24] WASHIZU K, ANDO K, KOIKEDA S, HIROSE S, MATSUURA A, TAKAGI H, MOTOKI M, TAKEUCHI K. Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(1): 82-87.
    [25] LIU S, WANG M, DU GC, CHEN J. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization[J]. BMC Biotechnology, 2016, 16(1): 75.
    [26] XUE T, SUN MM, CHEN D, YUAN X, LIU K, CHEN JN, YE HY, FANG JP, HE WJ, CHEN YQ. Molecular cloning and overexpression of the transglutaminase gene from Streptomyces mobaraensis[J]. Food Science and Technology Research, 2019, 25(5): 687-694.
    [27] SAMBROOK J, RUSSELL DW. Molecular Cloning: a Laboratory Manual[M]. 3rd Edition. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2001.
    [28] SHIRLING EB, GOTTLIEB D. Methods for characterization of Streptomycesspecies[J]. International Journal of Systematic Bacteriology, 1966, 16(3): 313-340.
    [29] KIESER T, BIBB MJ, BUTTNER MJ, CHATER KF, HOPWOOD DA. Practical StreptomycesGenetics[M]. The United Kingdom: The John Innes Foundation, 2000.
    [30] YE JC, YANG PH, ZHOU JW, DU GC, LIU S. Efficient production of a thermostable mutant of transglutaminase by Streptomyces mobaraensis[J]. Journal of Agricultural and Food Chemistry, 2024, 72(8): 4207-4216.
    [31] GROSSOWICZ N, WAINFAN E, BOREK E, WAELSCH H. The enzymatic formation of hydroxamic acids from glutamine and asparagine[J]. Journal of Biological Chemistry, 1950, 187(1): 111-125.
    [32] GIBSON DG, YOUNG L, CHUANG RY, VENTER JC, HUTCHISON CA, SMITH HO. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6: 343-345.
    [33] TÉLLEZ-LUIS SJ, RAMÍREZ JA, VÁZQUEZ M. Production of transglutaminase by Streptoverticillium ladakanum NRRL-3191 using glycerol as carbon source[J]. Food Technology and Biotechnology, 2004, 42(2): 75-81.
    [34] KANAJI T, OZAKI H, TAKAO T, KAWAJIRI H, IDE H, MOTOKI M, SHIMONISHI Y. Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112[J]. Journal of Biological Chemistry, 1993, 268(16): 11565-11572.
    [35] YOKOYAMA K, NIO N, KIKUCHI Y. Properties and applications of microbial transglutaminase[J]. Applied Microbiology and Biotechnology, 2004, 64(4): 447-454.
    引证文献
引用本文

杨科科,李子龙,修涵,李国莹,秦慧民,王为善. 一种新谷氨酰胺转氨酶的发掘、纯化、酶学性质测定及重组表达[J]. 微生物学通报, 2024, 51(12): 5090-5104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-03
  • 录用日期:2024-05-13
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码