科微学术

微生物学通报

灰葡萄孢组蛋白乙酰转移酶BcGCN5的功能
作者:
基金项目:

国家自然科学基金(32072369);河北省自然科学基金(C2022204040);中央引导地方科技发展资金(246Z6506G)


Function of histone acetyltransferase BcGCN5 in Botrytis cinerea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    【背景】组蛋白乙酰转移酶general control nonderepressible-5 (GCN5)作为一种重要的表观遗传修饰因子,参与调控真核生物的多种生命活动。目前,关于灰葡萄孢(Botrytis cinerea)组蛋白乙酰转移酶GCN5的功能与机制研究尚未见报道。【目的】明确灰葡萄孢组蛋白乙酰转移酶GCN5的编码基因BcGCN5在病菌生长发育和致病过程中的功能,为进一步阐明组蛋白乙酰化修饰在病原菌生长发育及致病过程中的功能与调控机制奠定基础。【方法】利用基因敲除技术构建了灰葡萄孢BcGCN5基因的敲除突变体ΔBcGCN5;以野生型菌株B05.10为对照,对突变体ΔBcGCN5的表型和致病力进行分析。【结果】灰葡萄孢BcGCN5基因的敲除突变体ΔBcGCN5的生长速率明显减慢,菌核数量较少,分生孢子数量显著降低,对番茄果实和烟草叶片的致病力减弱,产酸能力降低。【结论】灰葡萄孢组蛋白乙酰转移酶BcGCN5正调控病菌的生长、发育和致病过程。

    Abstract:

    [Background] The histone acetyltransferase general control nonderepressible-5 (GCN5) is a key epigenetic modifier that plays a role in regulating biological processes in eukaryotes. At present, little is known about the function and mechanism of GCN5 in Botrytis cinerea.[Objective] To analyze the function of BcGCN5 and lay a foundation for elucidating the function and regulatory mechanism of histone acetylation in the growth, development, and pathogenicity of B.cinerea.[Methods] The mutant ΔBcGCN5of B. cinerea was successfully constructed by gene knockout. The phenotype and pathogenicity of ΔBcGCN5 were analyzed with the wild-type strain B05.10 as the control.[Results] ΔBcGCN5 showed slow growth, reduced production of sclerotia and conidia, and diminished acid production, which ultimately led to weakened pathogenicity towards tomato fruits and tobacco leaves. [Conclusion] BcGCN5 positively regulated the growth, development, and pathogenicity of B.cinerea.

    参考文献
    [1] GRANT PA, DUGGAN L, CÔTÉ J, ROBERTS SM, BROWNELL JE, CANDAU R, OHBA R, OWEN-HUGHES T, ALLIS CD, WINSTON F, BERGER SL, WORKMAN JL. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex[J]. Genes & Development, 1997, 11(13): 1640-1650.
    [2] HELMLINGER D, TORA L. Sharing the SAGA[J]. Trends in Biochemical Sciences, 2017, 42(11): 850-861.
    [3] ZHANG YD, SU YL, LIU ZW, YU JL, JIN M. A comparative study of the hopanoid hydrocarbons in sediments of two lakes (Fuxian and Changdang) with contrasting environments[J]. Limnologica, 2019, 76: 1-10.
    [4] MORRIS SA, RAO B, GARCIA BA, HAKE SB, DIAZ RL, SHABANOWITZ J, HUNT DF, ALLIS CD, LIEB JD, STRAHL BD. Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification[J]. Journal of Biological Chemistry, 2007, 282(10): 7632-7640.
    [5] 常鹏. 含LisH结构域蛋白和组蛋白乙酰转移酶Gcn5在白念珠菌菌丝发育中的功能研究[D]. 北京: 中国科学院大学博士学位论文, 2015. CHANG P. Study on the function of Gcn5 containing LisH domain protein and histone acetyltransferase in the mycelium development of Candida albicans[D]. Beijing: Doctoral Dissertation of University of Chinese Academy of Sciences, 2015(in Chinese).
    [6] VLACHONASIOS KE, KALDIS A, NIKOLOUDI A, TSEMENTZI D. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses[J]. Plant Signaling & Behavior, 2011, 6(10): 1475-1478.
    [7] KIM S, PIQUEREZ SJM, RAMIREZ-PRADO JS, MASTORAKIS E, VELUCHAMY A, LATRASSE D, MANZA-MIANZA D, BRIK-CHAOUCHE R, HUANG Y, RODRIGUEZ-GRANADOS NY, CONCIA L, BLEIN T, CITERNE S, BENDAHMANE A, BERGOUNIOUX C, CRESPI M, MAHFOUZ MM, RAYNAUD C, HIRT H, NTOUKAKIS V, et al. GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes[J]. Nucleic Acids Research, 2020, 48(11): 5953-5966.
    [8] XUE-FRANZÉN Y, HENRIKSSON J, BÜRGLIN TR, WRIGHT APH. Distinct roles of the Gcn5 histone acetyltransferase revealed during transient stress-induced reprogramming of the genome[J]. BMC Genomics, 2013, 14: 479.
    [9] NÜTZMANN HW, REYES-DOMINGUEZ Y, SCHERLACH K, SCHROECKH V, HORN F, GACEK A, SCHÜMANN J, HERTWECK C, STRAUSS J, BRAKHAGE AA. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(34): 14282-14287.
    [10] KROGAN NJ, BAETZ K, KEOGH MC, DATTA N, SAWA CK, KWOK TCY, THOMPSON NJ, DAVEY MG, POOTOOLAL J, HUGHES TR, EMILI A, BURATOWSKI S, HIETER P, GREENBLATT JF. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(37): 13513-13518.
    [11] XIN Q, GONG YJ, LV XX, CHEN GJ, LIU WF. Trichoderma reesei histone acetyltransferase Gcn5 regulates fungal growth, conidiation, and cellulase gene expression[J]. Current Microbiology, 2013, 67(5): 580-589.
    [12] ZHOU SY, YANG QQ, YIN CF, LIU L, LIANG WX. Systematic analysis of the lysine acetylome in Fusarium graminearum[J]. BMC Genomi潣汳攬挠甲氰愱父??椱挷爨漱戩椺漠氱漰朱礹???ひ???″??????????ㄠ?????, NAQVI NI. Twilight, a novel circadian-regulated gene, integrates phototropism with nutrient and redox homeostasis during fungal development[J]. PLoS Pathogens, 2015, 11(6): e1004972.
    [14] YAO ZY, DELORME-AXFORD E, BACKUES SK, KLIONSKY DJ. Atg41/Icy2 regulates autophagosome formation[J]. Autophagy, 2015, 11(12): 2288-2299.
    [15] CAI Q, WANG JJ, FU B, YING SH, FENG MG. Gcn5-dependent histone H3 acetylation and gene activity is required for the asexual development and virulence of Beauveria bassiana[J]. Environmental Microbiology, 2018, 20(4): 1484-1497.
    [16] DOEHLEMANN G, MOLITOR F, HAHN M. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea[J]. Fungal Genetics and Biology, 2005, 42(7): 601-610.
    [17] 蒋伶活, 李西川, 智慧. 白念珠菌菌丝发育的遗传调控[J]. 细胞生物学杂志, 2006, 28(3): 387-391. JIANG LH, LI XC, ZHI H. Genetic regulation of hyphal development in Candida albicans[J]. Chinese Journal of Cell Biology, 2006, 28(3): 387-391(in Chinese).
    [18] GRIMALDI B, COIRO P, FILETICI P, BERGE E, DOBOSY JR, FREITAG M, SELKER EU, BALLARIO P. The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1[J]. Molecular Biology of the Cell, 2006, 17(10): 4576-4583.
    [19] ZHANG SL, LIANG ML, NAQVI NI, LIN CX, QIAN WQ, ZHANG LH, DENG YZ. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae[J]. Autophagy, 2017, 13(8): 1318-1330.
    [20] LIANG ML, ZHANG SL, DONG LH, KOU YJ, LIN CX, DAI WJ, ZHANG LH, DENG YZ. Label-free quantitative proteomics of lysine acetylome identifies substrates of Gcn5 in Magnaporthe oryzae autophagy and epigenetic regulation[J]. mSystems, 2018, 3(6): e00270-18.
    [21] RÖSLER SM, KRAMER K, FINKEMEIER I, HUMPF HU, TUDZYNSKI B. The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization[J]. M
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张强,李白,刘晓颖,藏金萍,曹宏哲,张康,邢继红,董金皋. 灰葡萄孢组蛋白乙酰转移酶BcGCN5的功能[J]. 微生物学通报, 2024, 51(12): 5078-5089

复制
分享
文章指标
  • 点击次数:55
  • 下载次数: 116
  • HTML阅读次数: 109
  • 引用次数: 0
历史
  • 收稿日期:2024-06-22
  • 录用日期:2024-09-20
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码