科微学术

微生物学通报

三七连作土壤细菌、真菌和原生生物群落的差异及驱动因素分析
作者:
基金项目:

国家自然科学基金(31960630)


Variation trends and drivers of bacterial, fungal, and protist communities in the soil with continuous cultivation of Panax notoginseng
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】 连作障碍是一种存在于农业生产中的常见现象,连作促使植株根际土壤中的养分比例失衡及微生物群落结构失衡,导致植株遭受病虫害等侵袭。【目的】 揭示三七(Panax notoginseng)连作及根腐病发生过程中根际土壤的多元生物群落差异变化规律及驱动因素。【方法】 对不同生长年限的健康与患病三七根际土壤细菌、真菌、原生生物群落差异,以及与土壤因子的相互关系进行研究。【结果】 种植三七土样pH值均小于7.0,土样中重金属镉(Cd)、砷(As)含量超标,镉在3年生样品中表现出显著富集的特征。α多样性结果显示,2年生患病三七显著降低了细菌、真菌群落的多样性,而1年和3年生患病三七显著降低了原生生物群落的多样性。主坐标分析(principal coordinate analysis, PCoA)表明三七连作中细菌、真菌和原生生物群落的β多样性均表现出显著性差异,其中真菌群落在患病前后的差异性最为明显。原生生物群落功能分类分析表明,相对于寄生虫和光养生物,消费者在土壤样本中的类群最多。方差分析表明3年生患病三七土壤样品中消费者的丰度显著降低。真菌病原菌、细菌和原生生物群落的共现网络分析显示,真菌病原菌与原生生物类群间有更多的种间联系,其中占主导的原生生物类群是消费者。相关分析表明速效钾(available potassium, AK)对细菌和真菌的影响最大,镉对细菌、真菌和原生生物群落的影响均大于砷。【结论】 土壤根际多元生物群落差异和土壤理化性质相互作用导致了三七连作根腐病的发生。

    Abstract:

    [Background] Continuous cropping is a common phenomenon in agricultural production. Continuous cropping causes an imbalance of micronutrients and disturbs the microbial community structure in the rhizosphere soil of plants. Accordingly, plants are susceptible to pests and diseases. [Objective] To expose the variation trends and drivers of distinct biological communities in the rhizosphere soil of Panax notoginseng during continuous cropping and the occurrence of root rot. [Methods] We compared the bacterial, fungal, and protist communities in the rhizosphere soil samples of healthy and diseased P.notoginseng growing for different years and the relationships between soil microbial communities with soil factors. [Results] The soil samples presented pH<7.0, with the content of cadmium (Cd) and arsenic (As) exceeding the standard limits. Cadmium was significantly enriched in the soil samples of 3-year-old P.notoginseng. The results of α-diversity analysis showed that the disease of 2-year-old P.notoginseng significantly reduced the diversity of bacteria and fungi, and the disease of 1- and 3-year-old P.notoginseng significantly reduced the diversity of protist. The principal coordinate analysis showed that the β-diversity of bacterial, fungal, and protist communities in the rhizosphere soil of P.notoginseng exhibited significant differences before and after the infection with root rot, with the fungal community showing the most apparent differences. In the protist community, consumers were richer than parasites and phototrophs in the soil samples. The analysis of variance showed a considerable decrease in the abundance of consumers in the soil samples of diseased 3-year-old P.notoginseng. The co-occurrence network of fungal pathogens with bacteria and protist showed more interspecific associations between fungal pathogens and protist, with consumers being dominant in the protist community. The correlation analysis showed that available potassium had larger effects on bacteria and fungi. Cd, had more significant effects than As on the bacterial, fungal, and protist communities. [Conclusion] The differences in bacterial, fungal, and protist communities in rhizosphere soil and the interactions between microorganisms and physicochemical properties of soil result in the occurrence of root rot in the field with continuous cropping of P.notoginseng.

    参考文献
    [1] 拱健婷, 张子龙, 王雄飞, 刘凤波, 赵志刚. 三七自毒与化感作用初步研究[J]. 广西植物, 2014, 34(3): 362-368. GONG JT, ZHANG ZL, WANG XF, LIU FB, ZHAO ZG. Preliminary study on autointoxication and allelopathy of Panax notoginseng[J]. Guihaia, 2014, 34(3): 362-368(in Chinese).
    [2] 杨敏, 梅馨月, 郑建芬, 尹兆波, 赵芝, 张潇丹, 何霞红, 朱书生. 三七主要病原菌对皂苷的敏感性分析[J]. 植物保护, 2014, 40(3): 76-81. YANG M, MEI XY, ZHENG JF, YIN ZB, ZHAO Z, ZHANG XD, HE XH, ZHU SS. Sensitivity of the pathogens of Panax notoginseng to ginsenosides[J]. Plant Protection, 2014, 40(3): 76-81(in Chinese).
    [3] GUO HB, CUI XM, AN N, CAI GP. Sanchi ginseng (Panax notoginseng (Burkill) F.H. Chen) in China: distribution, cultivation and variations[J]. Genetic Resources and Crop Evolution, 2010, 57(3): 453-460.
    [4] MENG S, LI-QIN YE, ZI-LONG Z. Progress on the Cause of Continuous Cropping Obstacle of Panax notoginseng and its Countermeasures[J]. Journal of Mountain Agriculture and Biology, 2015, 34(3): 63-67.
    [5] 郑冬梅, 李佳, 欧小宏, 王家金, 张智慧, 郭兰萍, 刘大会. 三七种植地土壤养分动态变化研究[J]. 西南农业学报, 2015, 28(1): 279-285. Zheng DM, Li J, Ou XH, WANG JJ, ZHANG ZH, GUO LP, LIU DH. Nutrients dynamic changes in cultivation soil of Panax notoginseng[J]. Southwest China Journal of Agricultural Sciences, 2015, 28: 279-285(in Chinese).
    [6] 官会林, 陈昱君, 刘士清, 张无敌, 夏朝凤. 三七种植土壤微生物类群动态与根腐病的关系[J]. 西南农业大学学报(自然科学版), 2006, 28(5): 706-709. GUAN HL, CHEN YJ, LIU SQ, ZHANG WD, XIA CF. On the relationship between root rot in Panax notoginseng and soil micrebes[J]. Journal of Southwest Agricultural University, 2006, 28(5): 706-709(in Chinese).
    [7] OLADIPO OG, AWOTOYE OO, OLAYINKA A, EZEOKOLI OT, MABOETA MS, BEZUIDENHOUT CC. Heavy metal tolerance potential of Aspergillus strains isolated from mining sites[J]. Bioremediation Journal, 2016, 20(4): 287-297.
    [8] 张重义, 林文雄. 药用植物的化感自毒作用与连作障碍[J]. 中国生态农业学报, 2009, 17(1): 189-196. ZHANG ZY, LIN WX. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 189-196(in Chinese).
    [9] TAN Y, CUI YS, LI HY, KUANG AX, LI XR, WEI YL, JI XL. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices[J]. Journal of Basic Microbiology, 2017, 57(4): 337-344.
    [10] XIONG W, JOUSSET A, GUO S, KARLSSON I, ZHAO QY, WU HS, KOWALCHUK GA, SHEN QR, LI R, GEISEN S. Soil protist communities form a dynamic hub in the soil microbiome[J]. The ISME Journal, 2018, 12(2): 634-638.
    [11] GUO S, XIONG W, XU H, HANG XN, LIU HJ, XUN WB, LI R, SHEN QR. Continuous application of different fertilizers induces distinct bulk and rhizosphere soil protist communities[J]. European Journal of Soil Biology, 2018, 88: 8-14.
    [12] 向维, 韦小兰, 曹科鑫, 李亮波, 黄荣韶. 三七皂苷类自毒物质降解细菌分离及其降解特性[J]. 广西植物, 2023, 43(7):1173-1181. XIANG W, WEI XL, CAO KX, LI LB, HUANG RS. Isolation and characterization of autotoxic saponins- degrading bacterial strains from Panax notoginseng[J]. Guihaia, 2023, 43(7): 1173-1181(in Chinese).

    [13] 唐碧玉, 施意华, 邱丽, 阳兆鸿, 古行乾, 唐荣盛. 电感耦合等离子体质谱法测定土壤中6种重金属可提取态的含量[J]. 理化检验(化学分册), 2019, 55(7): 846-852. TANG BY, SHI YH, QIU L, GU XQ, TANG RS. Determination of Six Extractable Heavy Metals in Soil by ICP-MS[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 55(7): 846-852(in Chinese).
    [14] LIANG YT, JIANG YJ, WANG F, WEN CQ, DENG Y, XUE K, QIN YJ, YANG YF, WU LY, ZHOU JZ, SUN B. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover[J]. The ISME Journal, 2015, 9(12): 2561-2572.
    [15] MUELLER RC, PAULA FS, MIRZA BS, RODRIGUES JLM, NÜSSLEIN K, BOHANNAN BJM. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest[J]. The ISME Journal, 2014, 8(7): 1548-1550.
    [16] LOGARES R, AUDIC S, SANTINI S, PERNICE MC, de VARGAS C, MASSANA R. Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing[J]. The ISME Journal, 2012, 6(10): 1823-1833.
    [17] ZHAO PF, HONG S, LI YK, CHEN HM, GAO HC, WANG CS. From phyllosphere to insect cuticles: silkworms gather antifungal bacteria from mulberry leaves to battle fungal parasite attacks[J]. Microbiome, 2024, 12(1): 1.
    [18] GUILLOU L, BACHAR D, AUDIC S, BASS D, BERNEY C, BITTNER L, BOUTTE C, BURGAUD G, de VARGAS C, DECELLE J, del CAMPO J, DOLAN JR, DUNTHORN M, EDVARDSEN B, HOLZMANN M, KOOISTRA WHCF, LARA E, Le BESCOT N, LOGARES R, MAHÉ F, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy[J]. Nucleic Acids Research, 2013, 41(database issue): D597-D604.
    [19] ZHAO ZB, HE JZ, GEISEN S, HAN LL, WANG JT, SHEN JP, WEI WX, FANG YT, LI PP, ZHANG LM. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils[J]. Microbiome, 2019, 7(1): 33.
    [20] NGUYEN BA T, CHEN QL, YAN ZZ, LI CY, HE JZ, HU HW. Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems[J]. Soil Biology and Biochemistry, 2021, 160: 108317.
    [21] BARBERÁN A, BATES ST, CASAMAYOR EO, FIERER N. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal, 2012, 6(2): 343-351.
    [22] POCOCK MJO, EVANS DM, MEMMOTT J. The robustness and restoration of a network of ecological networks[J]. Science, 2012, 335(6071): 973-977.
    [23] 袁国军, 卢绍辉, 梅象信, 庞荣丽. 农用地土壤污染风险管控标准延伸理解及其评价标准现状分析[J]. 中国农学通报, 2020, 36(2): 84-89. YUAN GJ, LU SH, MEI XX, PANG RL. Extended Understanding of Soil Pollution Risk Management Standards for Agricultural Lands and the Status of Evaluation Standards[J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 84-89(in Chinese).
    [24] SUN J, ZHANG Q, ZHOU J, WEI QP. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site[J]. PLoS One, 2014, 9(10): e111744.
    [25] 谭勇, 崔尹赡, 季秀玲, 李晓然, 崔秀明, 魏云林. 三七种植前后土壤细菌群落结构与多样性分析[J]. 昆明理工大学学报(自然科学版), 2016, 41(6): 92-99. TAN Y, CUI YS, JI XL, LI XR, CUI XM, WEI YL. Soil bacterial community structure and diversity of Panax notoginseng during cropping practices[J]. Journal of Kunming University of Science and Technology (Natural Sciences Edition), 2016, 41(6): 92-99(in Chinese).
    [26] 余妙, 蒋景龙, 任绪明, 李丽, 焦成瑾, 杨玲娟, 徐皓. 西洋参根腐病发生与根际真菌群落变化关系研究[J]. 中国中药杂志, 2018, 43(10): 2038-2047. YU M, JIANG JL, REN XM, LI L, JIAO CJ, YANG LJ, XU H. Research on relationship between occurrence of root rot and changes of fungal communities in rhizosphere of Panax quinquefolius[J]. China Journal of Chinese Materia Medica, 2018, 43(10): 2038-2047(in Chinese).
    [27] 罗正明, 刘晋仙, 周妍英, 杜京旗, 吴强, 柴宝峰. 亚高山草地土壤原生生物群落结构和多样性海拔分布格局[J]. 生态学报, 2021, 41(7): 2783-2793. LUO ZM, LIU JX, ZHOU YY, DU JQ, WU Q, CHAI BF. Community structures and diversity patterns of the soil protist communities along an altitudinal gradient in a subalpine grassland[J]. Acta Ecologica Sinica, 2021, 41(7): 2783-2793(in Chinese).
    [28] 罗文富, 喻盛甫, 贺承福, 李忠义, 王朝梁, 崔秀明. 三七根腐病病原及复合侵染的研究[J]. 植物病理学报, 1997, 27(1): 86-92. LUO WF, YU SF, HE CF, LI ZY, WANG CL, CUI XM. on the combined infection of root rot pathogens on panax notoginseng[J]. Acta Phytopathologica Sinica, 1997, 27(1): 86-92(in Chinese).
    [29] 汪静, 梁宗锁, 康冰, 罗美佳. 文山三七根腐病病原真菌的鉴定与药剂防治[J]. 西北林学院学报, 2015, 30(1): 158-163. WANG J, LIANG ZS, KANG B, LUO MJ. Identification of root rot pathogen of Panax notoginseng from Wenshan[J]. Journal of Northwest Forestry University, 2015, 30(1): 158-163(in Chinese).
    [30] SAPP M, PLOCH S, FIORE-DONNO AM, BONKOWSKI M, ROSE LE. Protists are an integral partof the Arabidopsis thaliana microbiome[J]. Environmental Microbiology, 2018, 20(1): 30-43.
    [31] GEISEN S, MITCHELL EAD, ADL S, BONKOWSKI M, DUNTHORN M, EKELUND F, FERNÁNDEZ LD, JOUSSET A, KRASHEVSKA V, SINGER D, SPIEGEL FW, WALOCHNIK J, LARA E. Soil protists: a fertile frontier in soil biology research[J]. FEMS Microbiology Reviews, 2018, 42(3): 293-323.
    [32] LANGILLE MGI, ZANEVELD J, CAPORASO JG, McDONALD D, KNIGHTS D, REYES JA, CLEMENTE JC, BURKEPILE DE, VEGA THURBER RL, KNIGHT R, BEIKO RG, HUTTENHOWER C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31: 814-821.
    [33] OLIVERIO AM, GEISEN S, DELGADO-BAQUERIZO M, MAESTRE FT, TURNER BL, FIERER N. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 2020, 6(4): eaax8787.
    [34] HILTUNEN T, FRIMAN VP, KAITALA V, MAPPES J, LAAKSO J. Predation and resource fluctuations drive eco-evolutionary dynamics of a bacterial community[J]. Acta Oecologica, 2012, 38: 77-83.
    [35] LIU HW, BRETTELL LE, SINGH B. Linking the phyllosphere microbiome to plant health[J]. Trends in Plant Science, 2020, 25(9): 841-844.
    [36] 吴照祥, 郝志鹏, 陈永亮, 曾燕, 郭兰萍, 黄璐琦, 王勇, 陈保冬. 三七根腐病株根际土壤真菌群落组成与碳源利用特征研究[J]. 菌物学报, 2015, 34(1): 65-74. WU ZX, HAO ZP, CHEN YL, ZENG Y, HUANG LQ, WANG Y, CHEN BD. Characterization of fungal community composition and carbon source utilization in the rhizosphere soil of Panax notoginseng suffering from root-rot disease[J]. Mycosystema, 2015, 34(1): 65-74(in Chinese).
    [37] 刘彤彤, 卢巧芳, 王男麒, 王天琪, 刘环环, 左元梅. 根系分泌物抑制连作障碍线虫病的根际调控机制及其应用[J]. 植物营养与肥料学报, 2019, 25(6): 1038-1046. LIU TT, LU QF, WANG NQ, WANG TQ, LIU HH, ZUO YM. The rhizosphere regulation mechanism and use of root exudates to inhibit continuous monocropping barrier by nematode disease[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 1038-1046(in Chinese).
    [38] 袁可能. 植物营养元素的土壤化学[M]. 北京: 科学出版社, 1983. YUAN KN. Soil chemistry of plant nutrients[M]. Beijing: Science Press, 1983(in Chinese).
    [39] 刘莉, 刘大会, 金航, 冯光泉, 张金渝, 韦美丽, 赵振玲. 三七连作障碍的研究进展[J]. 山地农业生物学报, 2011, 30(1): 70-75. LIU L, LIU DH, JIN H, FENG GQ, ZHANG JY, WEI ML, ZHAO ZL. Overview on the mechanisms and control methods of sequential cropping obstacle of Panax notoginseng F.H. Chen[J]. Journal of Mountain Agriculture and Biology, 2011, 30(1): 70-75(in Chinese).
    [40] 刘莉, 赵安洁, 杨雁, 金航, 崔秀明, 欧小宏, 刘大会. 三七不同间隔年限种植土壤的理化性状比较分析[J]. 西南农业学报, 2013, 26(5): 1946-1952. LIU L, ZHAO AJ, YANG Y, JIN H, CUI XM, OU XH, LIU DH. Comparative analysis of physical and chemical properties of Panax notoginseng replant soils in different intervals[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(5): 1946-1952(in Chinese).
    [41] WEI XR, HAO MD, SHAO MG, GALE WJ. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization[J]. Soil and Tillage Research, 2006, 91(1/2): 120-130.
    [42] MARSCHNER P, CROWLEY D, YANG CH. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type[J]. Plant and Soil, 2004, 261(1): 199-208.
    [43] ZHAO J, NI T, LI Y, XIONG W, RAN W, SHEN B, SHEN QR, ZHANG RF. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J]. PLoS One, 2014, 9(1): e85301.
    [44] 沈建平, 张明宇, 刘高峰, 李小龙, 石德兴, 王岩. 施用石灰氮对烟株根际土壤微生物区系的影响[J]. 中国土壤与肥料, 2021(1): 75-82. SHEN JP, ZHANG MY, LIU GF, LI XL, SHI DX, WANG Y. Effects of lime nitrogen application on microbial flora of tobacco rhizosphere soil[J]. Soil and Fertilizer Sciences in China, 2021(1): 75-82(in Chinese).
    [45] TAYYAB M, ISLAM W, LEE CG, PANG ZQ, KHALIL F, LIN S, LIN WX, ZHANG H. Short-term effects of different organic amendments on soil fungal composition[J]. Sustainability, 2019, 11(1): 198.
    [46] PATERSON E, GEBBING T, ABEL C, SIM A, TELFER G. Rhizodeposition shapes rhizosphere microbial community structure in organic soil[J]. The New Phytologist, 2007, 173(3): 600-610.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘志丹,刘雨艳,陈金苗,魏云林,字富庭,谭勇. 三七连作土壤细菌、真菌和原生生物群落的差异及驱动因素分析[J]. 微生物学通报, 2025, 52(3): 1148-1165

复制
分享
文章指标
  • 点击次数:14
  • 下载次数: 19
  • HTML阅读次数: 28
  • 引用次数: 0
历史
  • 收稿日期:2024-05-26
  • 录用日期:2024-07-10
  • 在线发布日期: 2025-03-19
文章二维码