科微学术

微生物学通报

布莱克韦尔虫草实时荧光定量逆转录PCR内参基因的筛选
作者:
基金项目:

农业农村部农业微生物资源收集与保藏重点实验室开放基金(KLMRCP2023-01);山西省基础研究计划(202203021221036)


Screening of reference genes for real-time quantitative reverse transcription PCR in Cordyceps blackwelliae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】实时荧光定量逆转录PCR (real-time quantitative reverse transcription PCR, RT-qPCR)常用于分析基因表达,但选择合适的内参基因,对分析结果的稳定性非常重要。布莱克韦尔虫草是一种具有开发价值的虫草,研究其功能基因表达具有重要意义。【目的】筛选获得布莱克韦尔虫草不同生长阶段(液体发酵菌丝体、小麦粒培养基菌丝体及子实体)最稳定的内参基因。【方法】选取8个候选内参基因(18S rRNA、gapdhꞵ-tubulincyclophilin Aγ-actinrpl10tef1αubiquitin),采用RT-qPCR技术进行扩增,结合geNorm、NormFinder、BestKeeper、ΔCt等算法,评估这些基因在布莱克韦尔虫草不同生长发育阶段的表达稳定性。【结果】相比其他基因,γ-actin和18S rRNA在不同生长发育阶段的表达稳定性最好,可作为布莱克韦尔虫草基因表达分析的内参基因。【结论】本研究筛选出了布莱克韦尔虫草RT-qPCR的内参基因,为深入研究生长发育过程中的基因表达规律奠定了基础。

    Abstract:

    [Background] Gene expression is often studied by real-time quantitative reverse transcription PCR (RT-qPCR), the stability of which largely depends on the choice of reference genes. Cordyceps blackwelliae is a fungus of development potential, and it is thus vital to understand the expression patterns of functional genes in this fungus. [Objective] To identify the optimal reference genes that express stably across different developmental stages (mycelia from liquid culture, mycelia from wheat grain media, and fruiting bodies) of C. blackwelliae. [Methods] We utilized RT-qPCR to investigate the expression of eight reference genes (18S rRNA, gapdh, ꞵ-tubulin, cyclophilin A, γ-actin, rpl10, tef1α, and ubiquitin). The expression stability of these genes across different developmental stages was evaluated using geNorm, NormFinder, BestKeeper, and ∆Ct algorithms. [Results] The results indicated that γ-actin and 18S rRNA exhibited more stable expression than the other genes, making them suitable reference genes for the transcriptional analysis of functional genes in C. blackwelliae. [Conclusion] This study successfully identified appropriate reference genes for RT-qPCR in C. blackwelliae, aiding future research on gene expression dynamics.

    参考文献
    [1] 陈万浩, 梁建东, 韩燕峰, 邹晓, 张永军, 梁宗琦. 纵观虫草(真菌)的来世今生[J]. 菌物学报, 2021, 40(11): 2894-2905. CHEN WH, LIANG JD, HAN YF, ZOU X, ZHANG YJ, LIANG ZQ. Research overviews of Cordyceps: past, present and future[J]. Mycosystema, 2021, 40(11): 2894-2905(in Chinese).
    [2] 袁源, 戚梦, 张凤培, 刘钊, 刘昆, 吴小平, 张君丽, 傅俊生. 4种虫草相关真菌菌丝体粗多糖的生物活性评价[J]. 菌物学报, 2021, 40(6): 1446-1457. YUAN Y, QI M, ZHANG FP, LIU Z, LIU K, WU XP, ZHANG JL, FU JS. Evaluation of the biological activities of four species of Cordyceps (Isaria, Beauveria) mycelial crude polysaccharides[J]. Mycosystema, 2021, 40(6): 1446-1457(in Chinese).
    [3] CHEN B, SUN YL, LUO FF, WANG CS. Bioactive metabolites and potential mycotoxins produced by Cordyceps fungi: a review of safety[J]. Toxins, 2020, 12(6): 410.
    [4] 肖建辉, 李彦, 肖瑜, 钟建江. 虫草属真菌的生物活性及机制研究现状与展望[J]. 中国中药杂志, 2013, 38(5): 640-647. XIAO JH, LI Y, XIAO Y, ZHONG JJ. Advance and prospect of studies on bioactivity and mechanism of Cordyceps fungi[J]. China Journal of Chinese Materia Medica, 2013, 38(5): 640-647(in Chinese).
    [5] DONG CH, GUO SP, WANG WF, LIU XZ. Cordyceps industry in China[J]. Mycology, 2015, 6(2): 121-129.
    [6] SHI TN, GUAN YM, CHEN LH, HUANG SY, ZHU WF, JIN C. Application of near-infrared spectroscopy analysis technology to total nucleosides quality control in the fermented Cordyceps powder production process[J]. Journal of Analytical Methods in Chemistry, 2020, 2020: 8850437.
    [7] 王雅玲, 代玲玲, 赵轶男, 马堃. 蛹虫草功能食品的最新研究进展[J]. 食品工业科技, 2008, 29(11): 285-287. WANG YL, DAI LL, ZHAO YN, MA K. New development of food with Cordyceps militaris function[J]. Science and Technology of Food Industry, 2008, 29(11): 285-287(in Chinese).
    [8] MONGKOLSAMRIT S, NOISRIPOOM W, THANAKITPIPATTANA D, WUTIKHUN T, SPATAFORA JW, LUANGSA-ARD J. Disentangling cryptic species with isaria-like morphs in Cordycipitaceae[J]. Mycologia, 2018, 110(1): 230-257.
    [9] 樊香萍, 张姝, 张永杰. 布莱克韦尔虫草的生物活性评价及其子实体的人工培育[J]. 菌物学报, 2022, 41(11): 1807-1818. FAN XP, ZHANG S, ZHANG YJ. Evaluation of biological activities and artificial cultivation of fruiting bodies of Cordyceps blackwelliae[J]. Mycosystema, 2022, 41(11): 1807-1818(in Chinese).
    [10] 段东娥. 越南虫草科分类及系统发育研究[D]. 昆明: 云南大学硕士学位论文, 2019. DUAN DE. Taxonomy and phylogeny of Cordycipitaceae from Vietnam[D]. Kunming: Master’s Thesis of Yunnan University, 2019(in Chinese).
    [11] BUSTIN SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems[J]. Journal of Molecular Endocrinology, 2002, 29: 23-39.
    [12] GOMES AÉI, STUCHI LP, SIQUERIA NMG, HENRIQUE JB, VICENTINI R, RIBEIRO ML, DARREUX M, FERRAZ LFC. Selection and validation of reference genes for gene expression studies in Klebsiella pneumoniae using reverse transcription quantitative real-time PCR[J]. Scientific Reports, 2018, 8: 9001.
    [13] 张越, 姚方杰, 孙文娟, 方明, 武春爽. 黑木耳实时荧光定量PCR内参基因的筛选[J]. 菌物学报, 2020, 39(8): 1510-1519. ZHANG Y, YAO FJ, SUN WJ, FANG M, WU CS. Screening of reference genes for qRT-PCR amplification in Auricularia heimuer[J]. Mycosystema, 2020, 39(8): 1510-1519(in Chinese).
    [14] BAI B, REN J, BAI F, HAO L. Selection and validation of reference genes for gene expression studies in Pseudomonas brassicacearum GS20 using real-time quantitative reverse transcription PCR[J]. PLoS One, 2020, 15(1): e0227927.
    [15] BOLLMANN F, CASPER I, HENKE J, PAUTZ A. qRT-PCR: a method and its difficulties[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2012, 385(10): 949-951.
    [16] DUŠANIĆ D, BOLHA L, NARAT M, OVEN I. Setting up a gene expression study for tissue cells by method of quantitative real-time PCR[J]. Acta Agriculturae Slovenica, 2012, 100(1): 19-28.
    [17] YANG YY, XU XY, JING ZH, YE J, LI H, LI XY, SHI L, CHEN MY, WANG TY, XIE BG, TAO YX. Genome-wide screening and stability verification of the robust internal control genes for RT-qPCR in filamentous fungi[J]. Journal of Fungi, 2022, 8(9): 952.
    [18] 李兵, 刘柳, 单婷婷, 邢咏梅, 郭顺星. 蜜环菌(Armillaria mellea)内参基因的筛选[J]. 微生物学通报, 2022, 49(2): 473-482. LI B, LIU L, SHAN TT, XING YM, GUO SX. Selection of reference genes for real-time quantitative PCR of Armillaria mellea[J]. Microbiology China, 2022, 49(2): 473-482(in Chinese).
    [19] 郑永钦, 郑正, 陈燕玲, 黄洪霞, 许美容. 柑橘黄龙病菌内参基因的筛选与评估[J]. 微生物学通报, 2019, 46(11): 2985-2995. ZHENG YQ, ZHENG Z, CHEN YL, HUANG HX, XU MR. Screening and evaluation of reference genes for Candidatus Liberibacter asiaticus[J]. Microbiology China, 2019, 46(11): 2985-2995(in Chinese).
    [20] MA R, XU S, ZHAO YC, XIA B, WANG R. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis of gene expression in Lycoris aurea[J]. Frontiers in Plant Science, 2016, 7: 536.
    [21] LI MY, WANG F, JIANG Q, WANG GL, TIAN C, XIONG AS. Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens) at different development stages[J]. Frontiers in Plant Science, 2016, 7: 313.
    [22] 苏强军, 夏樱霞, 谢放, Uwitugabiye VESTINE, 陈照禾, 周刚. 冬虫夏草菌实时荧光定量PCR内参基因的筛选[J]. 菌物学报, 2021, 40(7): 1712-1722. SU QJ, XIA YX, XIE F, VESTINE U, CHEN ZH, ZHOU G. Screening of the reference genes for qRT-PCR analysis of gene expression in Ophiocordyceps sinensis[J]. Mycosystema, 2021, 40(7): 1712-1722(in Chinese).
    [23] LIAN TT, YANG T, LIU GJ, SUN JD, DONG CH. Reliable reference gene selection for Cordyceps militaris gene expression studies under different developmental stages and media[J]. FEMS Microbiology Letters, 2014, 356(1): 97-104.
    [24] XIANG QJ, LI J, QIN P, HE ML, YU XM, ZHAO K, ZHANG XP, MA MG, CHEN Q, CHEN XQ, ZENG XF, GU YF. Identification and evaluF, HUANG QH, SHAO YP, ZHANG L, XIE B, JIANG YJ, ZHU J, XIE BG. Identification of novel and robust internal control ge祮晥艳 f獲杯m 朼鱩茾酖呯杬赶卡癲兩坥噬孬敡嬠酶olv乡兣卥坡嘼瘯適戾 that褠卡兲来礠扳奵孩孴扡b腬煥礠学牯r RT-qPCR in filamentous fungi[J]. Scientific Reports, 2016, 6: 29236.or quantitative real-time PCR analysis of lignification related genes in postharvest Pleurotus eryngii[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(7): 219-227(in Chinese).
    [26] 武晨剑, 袁学文, 宋淋浩, 常明昌, 刘靖宇, 邓冰, 孟俊龙. 金针菇实时荧光定量PCR内参基因的筛选[J]. 食用菌学报, 2021, 28(1): 30-39. WU CJ, YUAN XW, SONG LH, CHANG MC, LIU JY, DENG B, MENG JL. Screening of reference genes for qRT-PCR amplification in Flammulina filiformis[J]. Acta Edulis Fungi, 2021, 28(1): 30-39(in Chinese).
    [27] XU J, XU ZC, ZHU YJ, LUO HM, QIAN J, JI AJ, HU YL, SUN W, WANG B, SONG JY, SUN C, CHEN SL. Identification and evaluation of reference genes for qRT-PCR normalization in Ganoderma lucidum[J]. Current Microbiology, 2014, 68(1): 120-126.
    [28] de ALMEIDA MR, RUEDELL CM, RICACHENEVSKY FK, SPEROTTO RA, PASQUALI G, FETT-NETO AG. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill[J]. BMC Molecular Biology, 2010, 11: 73.
    [29] VANDESOMPELE J, de PRETER K, PATTYN F, POPPE B, van ROY N, de PAEPE A, SPELEMAN F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): RESEARCH0034.
    [30] ANDERSEN CL, JENSEN JL, ØRNTOFT TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245-5250.
    [31] PFAFFL MW, TICHOPAD A, PRGOMET C, NEUVIANS TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515.
    [32] SCHMITTGEN TD, LIVAK KJ. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3: 1101-1108.
    [33] ZSÓRI KS, MUSZBEK L, CSIKI Z, SHEMIRANI AH. Validation of reference genes for the determination of platelet transcript level in healthy individuals and in patients with the history of myocardial infarction[J]. International Journal of Molecular Sciences, 2013, 14(2): 3456-3466.
    [34] 闫慧文, 关体坤, 张国庆, 陈青君. 皱环球盖菇实时荧光定量PCR内参基因的筛选[J]. 菌物学报, 2023, 42(6): 1298-1310. YAN HW, GUAN TK, ZHANG GQ, CHEN QJ. Screening of the reference genes for quantitative real-time PCR analysis of gene expression in Stropharia rugosoannulata[J]. Mycosystema, 2023, 42(6): 1298-1310(in Chinese).
    [35] 孟青艳, 尹荣华, 叶纯, 邱银生. 黄芩苷铝胁迫下产肠毒素大肠杆菌内参基因的筛选[J]. 微生物学通报, 2021, 48(4): 1160-1170. MENG QY, YIN RH, YE C, QIU YS. Reference gene selection for real-time quantitative PCR normalization in enterotoxigenic Escherichia coli exposed to baicalin-aluminum complexes[J]. Microbiology China, 2021, 48(4): 1160-1170(in Chinese).
    [36] ZARIVI O, CESARE P, RAGNELLI AM, AIMOLA P, LEONARDI M, BONFIGLI A, COLAFARINA S, POMA AM, MIRANDA M, PACIONI G. Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages[J]. Phytochemistry, 2015, 116: 78-86.
    [37] ZHOU YH, ZHANG YJ, LUO ZB, FAN YH, TANG GR, LIU LJ, PEI Y. Selection of optimal reference genes for expression analysis in the entomopathogenic fungus Beauveria bassiana during development, under changing nutrient conditions, and after exposure to abiotic stresses[J]. Applied Microbiology and Biotechnology, 2012, 93(2): 679-685.
    [38] TESTE MA, DUQUENNE M, FRANÇOIS JM, PARROU JL. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae[J]. BMC Molecular Biology, 2009, 10: 99.
    [39] TAO YX, van PEER A
    相似文献
    引证文献
引用本文

李佳妮,张姝,张永杰. 布莱克韦尔虫草实时荧光定量逆转录PCR内参基因的筛选[J]. 微生物学通报, 2025, 52(1): 219-229

复制
分享
文章指标
  • 点击次数:89
  • 下载次数: 155
  • HTML阅读次数: 83
  • 引用次数: 0
历史
  • 收稿日期:2024-04-26
  • 录用日期:2024-05-21
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码