科微学术

微生物学通报

黄铁矿生物浸出菌群的驯化及其优势物种与功能
作者:
基金项目:

国家重点研发计划(2021YFC2102200);国家自然科学基金青年基金(31400116);国家高技术研究发展计划子课题(2012AA021203);天津市科技计划(23YFYSHZ00050);中央引导地方科技发展专项资金(2024YD009)


Pyrite-bioleaching microbial community: domestication, identification of dominant species, and characterization of functions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】生物浸矿效果与浸矿过程中微生物群落的结构变化密切相关,解析浸矿过程中的微生物群落结构和功能对于进一步认识微生物在浸矿过程中的作用、构建高效菌群具有重要意义。【目的】通过驯化获得稳定高效浸出黄铁矿的微生物菌群,并解析其菌群结构和功能。【方法】以黄铁矿为能源来源将微生物菌群在9K培养基中长期传代转接,对比驯化前后菌群的铁硫氧化能力,利用宏基因组测序结合16S rRNA基因克隆文库对驯化后的菌群进行群落结构解析,通过分化培养实验,探究驯化后菌群中优势微生物在浸出黄铁矿过程中的功能,结合宏基因组功能注释结果分析驯化前后菌群功能基因的变化。【结果】通过为期10代的转接驯化,获得了组成稳定、浸矿功能提升,更加适应黄铁矿浸出环境的微生物菌群。基于宏基因组的结果,驯化后的菌群相对于驯化前,嗜酸硫杆状菌属(Acidithiobacillus)和硫化杆菌属(Sulfobacillus)的比例均上升;16S rRNA基因克隆文库的检测结果显示,驯化后菌群主要由氧化硫硫杆菌(Acidithiobacillus thiooxidans)和耐热硫化芽胞杆菌(Sulfobacillus thermotolerans)这2种微生物组成。驯化后菌群的铁氧化能力提升15.15%,硫氧化能力提升70.86%。对菌群的浸矿效果和组成它的优势种属单独的浸矿效果进行比较,以浸出黄铁矿中总铁的含量计算,驯化后5Biol菌群16 d的浸出率可达81.18%,氧化硫硫杆菌(A.thiooxidans)和耐热硫化芽胞杆菌(S.thermotolerans)单独的浸出率分别为51.86%和37.65%,5Bio菌群的浸矿能力优于组成它的优势种属的单独浸矿能力,说明菌群内优势种属之间可能存在协同作用,使得其浸矿效果达到了单物种不能达到的效果。通过分化培养后菌群组成的变化,判断氧化硫硫杆菌(A.thiooxidans)的主要作用是硫的氧化,而耐热硫化芽胞杆菌(S.thermotolerans)的主要作用是铁的氧化,耐热硫化芽胞杆菌(S.thermotolerans)需要依赖氧化硫硫杆菌(A.thiooxidans)的存在才能发挥铁氧化能力,说明菌群中不同物种可能通过协同合作共同提高了浸出黄铁矿的能力,这与5Biol菌群驯化后嗜酸硫杆状菌属(Acidithiobacillus)和硫化杆菌属(Sulfobacillus)的比例提高、浸矿能力得到增强是一致的。对驯化前后与铁硫代谢相关的功能基因进行分析,发现驯化后菌群铁的氧化主要通过sulfocyanin-like蛋白实现,硫的氧化主要通过sox系统、sor系统和非sox子系统实现。【结论】通过长期驯化传代的方法,可以获得组成稳定、功能强化的高效浸矿菌群。由于长期驯化菌群更加稳定,更容易解析其中不同菌种在执行浸矿功能中的作用。这对高效浸矿菌群的构建具有重要的指导意义。

    Abstract:

    [Background]The bioleaching performance is closely related to the microbial community structure and its dynamics during the bioleaching process. Understanding the changes in microbial community structure and function during the bioleaching process is crucial for elucidating the role of microorganisms in this process and building efficient microbial combinations.[Objective] To obtain the microbial community with stable and high pyrite-leaching efficiency by domestication, and analyze the structure and function of the microbial community. [Methods]The microbial community was subcultured in the 9K medium with pyrite as the energy source. The iron and sulfur oxidation capacity of the microbial community was measured before and after domestication. The structure of the domesticated microbial community was analyzed by metagenomic sequencing combined with 16S rRNA gene clone library. Differentiation culture experiments were carried out to study the functions of dominant microorganisms in the domesticated microbial community during pyrite bioleaching. The functional annotation of metagenomic sequencing results was carried out to analyze the functional changes of the microbial community before and after domestication.[Results]The microbial community with a stable structure, improved bioleaching ability, and adaptability to the pyrite leaching environment was obtained after domestication. The metagenomic sequencing results showed that the relative abundance of the genus Acidithiobacillusand Sulfobacillus were both increased. Detection results from the 16S rRNA gene clone library showed that the domesticated microbial community mainly consisted of Acidithiobacillus thiooxidans and Sulfobacillus thermotolerans, with the iron and sulfur oxidation capacity increasing by 15.15% and 70.86%, respectively. The leaching effects were compared between the bacterial community and the dominant species alone. In terms of total iron leached from pyrite, the 16-day leaching rate of the domesticated community 5Biol reached 81.18%, while those of A.thiooxidans and S.thermotolerans were 51.86% and 37.65%, respectively. The better leaching ability of 5Biol than that of single dominant species indicated that the existence of synergistic effect between dominant species in the community, which endowed 5Biol with the leaching effect that a single species cannot achieve. The differentiation culture experiments showcased that A.thiooxidans primarily contributed to sulfur oxidation, while S.thermotolerans was mainly responsible for iron oxidation. S.thermotolerans was dependent on A.thiooxidans for iron oxidation. This indicated that different strains within the community may collaborate synergistically, leveraging their respective strengths to enhance the overall leaching efficiency. This is consistent with the increases in the relative abundance of Acidithiobacillus and Sulfobacillus and the enhancement of leaching ability of 5Biol after domestication. After domestication, sulfocyanin-like proteins were the key proteins involved in iron oxidation, while sulfur oxidation included the sox system, sor system, and non-sox subsystems. [Conclusion] Long-term domestication by passages with a specific ore can yield a stable microbial community with enhanced bioleaching performance. The simplified stable microbial community makes it easy to elucidate the functional roles of different microbial species. The findings provide insights into the construction of efficient microbial communities for bioleaching.

    参考文献
    [1] JONES S, SANTINI JM. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms[J]. Essays in Biochemistry, 2023, 67(4): 685-699.
    [2] 武彪, 温建康, 王淀佐. 黄铁矿表面XPS分析与生物浸出机制研究[J]. 稀有金属, 2017, 41(6): 720-724. WU B, WEN JK, WANG DZ. XPS analysis and mechanism of pyrite biooxidation[J]. Chinese Journal of Rare Metals, 2017, 41(6): 720-724(in Chinese).
    [3] FENG SS, YIN YJ, YIN ZW, ZHANG HL, ZHU DQ, TONG YJ, YANG HL. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource[J]. Environmental Research, 2021, 194: 110702.
    [4] VERA M, SCHIPPERS A, HEDRICH S, SAND W. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation: part a[J]. Applied Microbiology and Biotechnology, 2022, 106(21): 6933-6952.
    [5] 刘佳晨, 刘金辉, 徐玲玲, 周义朋, 文旭祥. 生物浸矿微生物群落结构研究进展[J]. 稀有金属, 2021, 45(10): 1258-1268. LIU JC, LIU JH, XU LL, ZHOU YP, WEN XX. Recent research advances on microbial community structure in bioleaching[J]. Chinese Journal of Rare Metals, 2021, 45(10): 1258-1268(in Chinese).
    [6] WANG LM, YIN SH, WU AX, CHEN W. Synergetic bioleaching of copper sulfides using mixed microorganisms and its community structure succession[J]. Journal of Cleaner Production, 2020, 245: 118689.
    [7] BOSSE M, HEUWIESER A, HEINZEL A, NANCUCHEO I, MELO BARBOSA DALL’AGNOL H, LUKAS A, TZOTZOS G, MAYER B. Interaction networks for identifying coupled molecular processes in microbial communities[J]. BioData Mining, 2015, 8: 21.
    [8] RAWLINGS DE. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories, 2005, 4(1): 13.
    [9] BACELAR-NICOLAU P, JOHNSON DB. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures[J]. Applied and Environmental Microbiology, 1999, 65(2): 585-590.
    [10] TUFFIN IM, HECTOR SB, DEANE SM, RAWLINGS DE. Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank[J]. Applied and Environmental Microbiology, 2006, 72(3): 2247-2253.
    [11] HAN YF, MA XM, ZHAO W, CHANG YK, ZHANG XX, WANG XB, WANG JJ, HUANG ZY. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process[J]. Journal of Bioscience and Bioengineering, 2013, 116(4): 465-471.
    [12] 马皛梅, 韩一凡, 路福平, 张小霞, 温丹, 刘勇金, 白利明, 胡影, 黄志勇. 功能菌群耦合黄铁矿浸出软锰矿的研究[J]. 微生物学通报, 2012, 39(11): 1551-1559. MA XM, HAN YF, LU FP, ZHANG XX, WEN D, LIU YJ, BAI LM, HU Y, HUANG ZY. Study of coupled pyrite leached pyrolusite by functional microflora[J]. Microbiology China, 2012, 39(11): 1551-1559(in Chinese).
    [13] 苑凯君, 谢远东, 卜玲慧. 微乳液增稳浊度法测定硫酸根[J]. 新疆石油科技, 2000, 10(2): 2. YUAN KJ, XIE YD, BU LH. Determination of sulfate by microemulsion enhanced turbidity method[J]. Xinjiang Petroleum Science Technology, 2000, 10(2): 2(in Chinese).
    [14] HJ/T 345—2007. 水质铁的测定邻菲啰啉分光光度法[S]. 北京: 中国环境科学出版社, 2007. HJ/T 345—2007. Water quality: determination of iron: phenanthroline spectrophotometry[S]. Beijing: China Environmental Science Press, 2007(in Chinese).
    [15] 金瑜, 茅文湖. 邻菲啰啉分光光度法测定水中总铁的改进[J]. 北方环境, 2010, 22(6): 76-77. JIN Y, MAO WH. The improvement of determination of total iron in water with phenanthroline spectroptometry[J]. Environment and Development, 2010, 22(6): 76-77(in Chinese).
    [16] 马鸣超, 姜昕, 李俊, 王静. 应用16S rRNA基因克隆文库解析人工快速渗滤系统细菌种群多样性[J]. 微生物学通报, 2008, 35(5): 731-736. MA MC, JIANG X, LI J, WANG J. Analysis of bacterial community composition by 16S rRNA gene clone library sampling from constructed rapid infiltration system (CRI)[J]. Microbiology China, 2008, 35(5): 731-736(in Chinese).
    [17] XIA LX, LIU JS, XIAO L, ZENG J, LI BM, GENG MM, QIU GZ. Single and cooperative bioleaching of sphalerite by two kinds of bacteria: Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 190-195.
    [18] BOGDANOVA TI, TSAPLINA IA, KONDRAT’EVA TF, DUDA VI, SUZINA NE, MELAMUD VS, TOUROVA TP, KARAVAIKO GI. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, the wild type and sulfur oxygenase reductase defective mutant[J]. PLoS One, 2012, 7(9): e39470., LETAROVA MA, KOSTRYUKOVA ES, LETAROV AV. Sulfobacillus thermotolerans: new insights into resistance and metabolic capacities of acidophilic chemolithotrophs[J]. Scientific Reports, 2019, 9(1): 15069.
    [20] JONES DT, TAYLOR WR, THORNTON JM. The rapid generation of mutation data matrices from protein sequences[J]. Computer Applications in the Biosciences, 1992, 8(3): 275-282.
    [21] TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
    [22] XU CM, YU HM. Insights into constructing a stable and efficient microbial consortium[J]. Chinese Journal of Chemical Engineering, 2021, 30: 112-120.
    [23] JONES JA, VERNACCHIO VR, COLLINS SM, SHIRKE AN, XIU Y, ENGLAENDER JA, CRESS BF, McCUTCHEON CC, LINHARDT RJ, GROSS RA, KOFFAS MAG. Complete biosynthesis of anthocyanins using E. coli polycultures[J]. mBio, 2017, 8(3): e00621-17.
    [24] LINDEMANN SR, BERNSTEIN HC, SONG HS, FREDRICKSON JK, FIELDS MW, SHOU WY, JOHNSON DR, BELIAEV AS. Engineering microbial consortia for controllable outputs[J]. The ISME Journal, 2016, 10(9): 2077-2084.
    [25] LI ZH, WANG XN, ZHANG HR. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering[J]. Metabolic Engineering, 2019, 54: 1-11.
    [26] ZIESACK M, GIBSON T, OLIVER JKW, SHUMAKER AM, HSU BB, RIGLAR DT, GIESSEN TW, DiBENEDETTO NV, BRY L, WAY JC, SILVER PA, GERBER GK. Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium[J]. mSystems, 2019, 4(4): e00352-19.
    [27] 聂毅磊, 陈宏, 罗立津, 贾纬, 陈星伟. 一种浸矿混合菌种的筛选、鉴定及浸矿的研究[J]. 生物技术通报, 2016, 32(8): 177-183. NIE YL, CHEN H, LUO LJ, JIA W, CHEN XW. Screening and identification of mixed culture, and its bioleaching capacity[J]. Biotechnology Bulletin, 2016, 32(8): 177-183(in Chinese).
    [28] XIAO CQ, CHI R, FANG YJ. Effects of Acidiphilium cryptum on biosolubilization of rock phosphate in the presence of Acidithiobacillus ferrooxidans[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7): 2153-2159.
    [29] VALDES J, OSSANDON F, QUATRINI R, DOPSON M, HOLMES DS. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus[J]. Journal of Bacteriology, 2011, 193(24): 7003-7004.
    [30] KONDRAT’EVA TF, PIVOVAROVA TA, TSAPLINA IA, FOMCHENKO NV, ZHURAVLEVA AE, MURAV’EV MI, MELAMUD VS, BULAYEV AG. Diversity of the communities of acidophilic chemolithotrophic microorganisms in natural and technogenic ecosystems[J]. Microbiology, 2012, 81(1): 1-24.
    [31] JUSTICE NB, NORMAN A, BROWN CT, SINGH A, THOMAS BC, BANFIELD JF. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms[J]. BMC Genomics, 2014, 15: 1107.
    [32] 中国科学院天津工业生物技术研究所. 一株极端嗜酸的铁硫氧化菌及其在生物浸矿中的应用: CN202410207869.7[P]. 2024-05-07. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences. An extremely acidophilic iron-sulfur oxidizing bacterium and its application in bioleaching: CN202410207869.7[P]. 2024-05-07(in Chinese).
    [33] GAN M, JIE SQ, LI MM, ZHU JY, LIU XX. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles[J]. Marine Pollution Bulletin, 2015, 97(1/2): 47-55.
    [34] ZHANG X, LIU XD, LIANG YL, GUO X, XIAO YH, MA LY, MIAO B, LIU HW, PENG DL, HUANG WK, ZHANG YG, YIN HQ. Adaptive evolution of extreme acidophile Sulfobacillus thermosulfidooxidans potentially driven by horizontal gene transfer and gene loss[J]. Applied and Environmental Microbiology, 2017, 83(7): e03098-16.
    [35] CHEN LX, REN YL, LIN JQ, LIU XM, PANG X, LIN JQ. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王璐,赵维,成婷婷,韩一凡,王敬敬,张小霞,黄志勇. 黄铁矿生物浸出菌群的驯化及其优势物种与功能[J]. 微生物学通报, 2024, 51(12): 5006-5025

复制
分享
文章指标
  • 点击次数:87
  • 下载次数: 124
  • HTML阅读次数: 146
  • 引用次数: 0
历史
  • 收稿日期:2024-06-26
  • 录用日期:2024-10-19
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码