Abstract:The generation and spread of antimicrobial resistance (AMR) in the environment pose a serious threat to human health. The minimum inhibitory concentration (MIC) is a key indicator for assessing the risk of AMR in environmental settings. Based on a literature review, this study found that among the commonly employed MIC testing methods, broth microdilution was the most prevalent, followed by agar dilution and E-test, and the MIC values observed showed no differences among different testing methods. Furthermore, we collected and analyzed the MIC data of different strains and antibiotics from the EUCAST database. According to the data, the available AMR studies mainly focused on Gram-negative bacteria (G−), which had a larger amount of MIC data than Gram-positive bacteria (G+). Notably, we observed that G+ bacteria exhibited stronger resistance to antibiotics than G−. Acinetobacter baumanniiand Enterococcus faecium demonstrated the strongest resistance among G− and G+, respectively. Additionally, we found that the research on AMR primarily focused on β-lactams, with limited attention to sulfonamides and peptides. Bacteria displayed the strongest resistance to ampicillin-sulbactam, streptomycin, and fusidic acid among the antibiotics tested. This study reviews the current status of MIC testing methods and data. It emphasizes that existing data are insufficient and recommends expanding the scope of MIC research while promoting the sharing of AMR information.