科微学术

微生物学通报

环境抗生素耐药性风险评价中最小抑菌浓度的研究进展
作者:
基金项目:

国家自然科学基金(52200227,51938001,52170185)


Advancements in minimum inhibitory concentration (MIC) for risk assessment of environmental antimicrobial resistance
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [158]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    环境中抗生素耐药性(antimicrobial resistance, AMR)的产生和传播对人类健康构成了严重威胁,最小抑菌浓度(minimum inhibitory concentration, MIC)是评价环境中抗生素耐药性风险的关键指标。本研究基于文献梳理,发现常用的MIC测试方法中大部分采用肉汤微稀释法,其次是琼脂稀释法和E-test法,测试方法的不同对MIC值的影响不明显。基于EUCAST数据库,梳理了目前针对不同菌种和抗生素的MIC测试数据,发现革兰氏阴性菌(G)的AMR问题得到了更多关注,其MIC数据量远大于革兰氏阳性菌(G+),然而,G+对抗生素的耐药性比G更强。鲍曼不动杆菌(Acinetobacter baumannii)和屎肠球菌(Enterococcus faecium)分别是G和G+中耐药性最强的细菌。有关AMR的研究主要集中于β-内酰胺类抗生素,而磺胺类和多肽类研究相对较少。在所研究的抗生素中,细菌对氨苄西林钠、链霉素和夫西地酸的耐药性最强。本研究梳理和总结了MIC测试方法与数据研究现状,指出目前数据远远不足,建议持续扩大MIC研究的覆盖面,并促进耐药信息共享。

    Abstract:

    The generation and spread of antimicrobial resistance (AMR) in the environment pose a serious threat to human health. The minimum inhibitory concentration (MIC) is a key indicator for assessing the risk of AMR in environmental settings. Based on a literature review, this study found that among the commonly employed MIC testing methods, broth microdilution was the most prevalent, followed by agar dilution and E-test, and the MIC values observed showed no differences among different testing methods. Furthermore, we collected and analyzed the MIC data of different strains and antibiotics from the EUCAST database. According to the data, the available AMR studies mainly focused on Gram-negative bacteria (G), which had a larger amount of MIC data than Gram-positive bacteria (G+). Notably, we observed that G+ bacteria exhibited stronger resistance to antibiotics than G. Acinetobacter baumanniiand Enterococcus faecium demonstrated the strongest resistance among G and G+, respectively. Additionally, we found that the research on AMR primarily focused on β-lactams, with limited attention to sulfonamides and peptides. Bacteria displayed the strongest resistance to ampicillin-sulbactam, streptomycin, and fusidic acid among the antibiotics tested. This study reviews the current status of MIC testing methods and data. It emphasizes that existing data are insufficient and recommends expanding the scope of MIC research while promoting the sharing of AMR information.

    参考文献
    [1] BERENDONK TU, MANAIA CM, MERLIN C, FATTA-KASSINOS D, CYTRYN E, WALSH F, BÜRGMANN H, SØRUM H, NORSTRÖM M, PONS MN, KREUZINGER N, HUOVINEN P, STEFANI S, SCHWARTZ T, KISAND V, BAQUERO F, MARTINEZ JL. Tackling antibiotic resistance: the environmental framework[J]. Nature Reviews Microbiology, 2015, 13(5): 310-317.
    [2] PRESTINACI F, PEZZOTTI P, PANTOSTI A. Antimicrobial resistance: a global multifaceted phenomenon[J]. Pathogens and Global Health, 2015, 109(7): 309-318.
    [3] MARTÍNEZ JL. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887): 365-367.
    [4] 刘昌孝. 全球关注: 重视抗生素发展与耐药风险的对策[J]. 中国抗生素杂志, 2019, 44(1): 1-8. LIU CX. Global concern: Strategies for antibiotic development and risk of resistance[J]. Chinese Journal of Antibiotics, 2019, 44(1): 1-8(in Chinese).
    [5] 刘辉, 张供领, 许胜勇, 周迪. 细菌对抗生素耐药性的国内外研究现状[J]. 山东家禽, 2001(2): 32-34. LIU H, ZHANG GL, XU SY, ZHOU D. The research development of biotic resistance against bacteria in chickens[J]. Shandong Poultry, 2001(2): 32-34(in Chinese).
    [6] 李红娜, 杨珍珍, 何霄嘉. 抗微生物药物耐药性风险评估研究进展[J]. 中国环境科学, 2024, 44(9): 5209-5221. LI HN, YANG ZZ, HE XJ. Risk assessment of antimicrobial resistance[J]. China Environmental Science, 2024, 44(9): 5209-5221(in Chinese).
    [7] 张彤, 李炳. 水环境中抗生素耐药性的科学研究前沿、环境健康风险评估和控制阻断策略[J]. 科学通报, 2020, 65(24): 2543-2554. ZHANG T, LI B. Antibiotic resistance in water environment: frontiers of fundamental research, risk assessment and control strategies[J]. Chinese Science Bulletin, 2020, 65(24): 2543-2554(in Chinese).
    [8] LI D, YANG M, HU JY, ZHANG J, LIU RY, GU X, ZHANG Y, WANG ZY. Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river[J]. Environmental Microbiology, 2009, 11(6): 1506-1517.
    [9] SIDRACH-CARDONA R, HIJOSA-VALSERO M, MARTI E, BALCÁZAR JL, BECARES E. Prevalence of antibiotic-resistant fecal bacteria in a river impacted by both an antibiotic production plant and urban treated discharges[J]. Science of the Total Environment, 2014, 488: 220-227.
    [10] LI S, ZHANG RJ, HU JR, SHI WZ, KUANG YZ, GUO XY, SUN WL. Occurrence and removal of antibiotics and antibiotic resistance genes in natural and constructed riverine wetlands in Beijing, China[J]. Science of the Total Environment, 2019, 664: 546-553.
    [11] 苏志国, 张衍, 代天娇, 陈嘉瑜, 张永明, 温东辉. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10): 2217-2233. SU ZG, ZHANG Y, DAI TJ, CHEN JY, ZHANG YM, WEN DH. Antibiotic resistance genes and class 1 integron in the environment: research progress[J]. Microbiology China, 2018, 45(10): 2217-2233(in Chinese).
    [12] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487. SU JQ, HUANG FY, ZHU YG. Antibiotic resistance genes in the environment[J]. Biodiversity Science, 2013, 21(4): 481-487(in Chinese).
    [13] KÜMMERER K. Antibiotics in the aquatic environment: a review-Part I[J]. Chemosphere, 2009, 75(4): 417-434.
    [14] GYSSENS IC, van der MEER JWM. Required actions to control antimicrobial resistant healthcare-associated infections[M]//GOULD IM, van der MEER JWM, eds. Antibiotic Policies. New York, NY: Springer New York, 2011: 183-202.
    [15] BLOMBERG B, MANJI KP, URASSA WK, TAMIM BS, MWAKAGILE DSM, JUREEN R, MSANGI V, TELLEVIK MG, HOLBERG-PETERSEN M, HARTHUG S, MASELLE SY, LANGELAND N. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: a prospective cohort study[J]. BMC Infectious Diseases, 2007, 7: 43.
    [16] UNEP. Frontiers 2017 Emerging Issues of Environmental Concern[R]. United Nations Environment Programme, Nairobi, 2017.
    [17] 王方舟, 倪文涛, 崔俊昌. 抗菌药物亚抑菌浓度及其临床意义[J]. 中国感染与化疗杂志, 2017, 17(5): 597-601. WANG FZ, NI WT, CUI JC. Sub-inhibitory concentration of antimicrobial agents and its clinical implications[J]. Chinese Journal of Infection and Chemotherapy, 2017, 17(5): 597-601(in Chinese).
    [18] ANDERSSON DI, HUGHES D. Evolution of antibiotic resistance at non-lethal drug concentrations[J]. Drug Resistance Updates, 2012, 15(3): 162-172.
    [19] BENGTSSON-PALME J, JOAKIM LARSSON DG. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation[J]. Environment International, 2016, 86: 140-149.
    [20] LI FF, BAO YY, CHEN LJ, SU ZG, TANG YS, WEN DH. Screening of priority antibiotics in Chinese seawater based on the persistence, bioaccumulation, toxicity and resistance[J]. Environment International, 2023, 179: 108140.
    [21] HAN QF, ZHAO S, ZHANG XR, WANG XL, SONG C, WANG SG. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China[J]. Environment International, 2020, 138: 105551.
    [22] SUN M, CHANG ZQ, van den BRINK PJ, LI J, ZHAO FZ, RICO A. Environmental and human health risks of antimicrobials used in Fenneropenaeus chinensis aquaculture production in China[J]. Environmental Science and Pollution Research, 2016, 23(15): 15689-15702.
    [23] GULLBERG E, CAO S, BERG OG, ILBÄCK C, SANDEGREN L, HUGHES D, ANDERSSON DI. Selection of resistant bacteria at very low antibiotic concentrations[J]. PLoS Pathogens, 2011, 7(7): e1002158.
    [24] VARELA NP, FRIENDSHIP R, DEWEY C, VALDIVIESO A. Comparison of agar dilution and E-test for antimicrobial susceptibility testing of Campylobacter coil isolates recovered from 80 Ontario swine farms[J]. Canadian Journal of Veterinary Research, 2008, 72(2): 168-174.
    [25] HAQ SU, WANG L, GUO WZ, AQIB AI, MUNEER A, SAQIB M, AHMAD S, GHAFOOR M, IFTIKHAR A, CHEN KY, LIANG JP. Enhancing activity of β-lactam and fluoroquinolones antibiotics by artemisinin and its derivatives against MDR Escherichia coli[J]. Frontiers in Veterinary Science, 2022, 9: 1048531.
    [26] PRAKASH V, LEWIS JS 2nd, JORGENSEN JH. Vancomycin MICs for methicillin-resistant Staphylococcus aureus isolates differ based upon the susceptibility test method used[J]. Antimicrobial Agents and Chemotherapy, 2008, 52(12): 4528.
    [27] WANG H, HUEBNER R, CHEN M, KLUGMAN K. Antibiotic susceptibility patterns of Streptococcus pneumoniae in China and comparison of MICs by agar dilution and E-test methods[J]. Antimicrobial Agents and Chemotherapy, 1998, 42(10): 2633-2636.
    [28] SEIFERT H. Comparative in-vitro activities of trovafloxacin, ciproflaxacin, ofloxacin, fleroxacin and broad-spectrum β-lactams against aerobe blood culture isolates[J]. Zentralblatt für Bakteriologie, 1998, 288: 509-518.
    [29] CLARK CL, JACOBS MR, APPELBAUM PC. Activities of clinafloxacin, alone and in combination with other compounds, against 45 gram-positive and-negative organisms for which clinafloxacin MICs are high[J]. Antimicrobial Agents and Chemotherapy, 1999, 43(9): 2295-2298.
    [30] FUNG-TOMC J, GRADELSKI E, HUCZKO E, MINASSIAN B, BONNER DP. Activity of gatifloxacin against strains resistant to ofloxacin and ciprofloxacin and its ability to select for less susceptible bacterial variants[J]. International Journal of Antimicrobial Agents, 2001, 18(1): 77-80.
    [31] YAMAKAWA T, MITSUYAMA J, HAYASHI K. In vitro and in vivo antibacterial activity of T-3912, a novel non-fluorinated topical quinolone[J]. Journal of Antimicrobial Chemotherapy, 2002, 49(3): 455-465.
    [32] BOLMSTROM A, KARLSSON A. Influence of CO2 incubation on quinolone activity against Streptococcus pneumoniae and Haemophilus influenzae[J]. Diagnostic Microbiology and Infectious Disease, 2002, 42(1): 65-69.
    [33] FÉRIA C, FERREIRA E, CORREIA JD, GONÇALVES J, CANIÇA M. Patterns and mechanisms of resistance to beta-lactams and beta-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal[J]. Journal of Antimicrobial Chemotherapy, 2002, 49(1): 77-85.
    [34] KERRN MB, KLEMMENSEN T, FRIMODT- MØLLER N, ESPERSEN F. Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of Sul genes conferring sulphonamide resistance[J]. Journal of Antimicrobial Chemotherapy, 2002, 50(4): 513-516.
    [35] RIBES S, TABERNER F, DOMENECH A, CABELLOS C, TUBAU F, LIÑARES J, VILADRICH PF, GUDIOL F. Evaluation of fosfomycin alone and in combination with ceftriaxone or vancomycin in an experimental model of meningitis caused by two strains of cephalosporin-resistant Streptococcus pneumoniae[J]. Journal of Antimicrobial Chemotherapy, 2006, 57(5): 931-936.
    [36] MAZZARIOL A, KONCAN R, VITALI LA, CORNAGLIA G. Activities of 16-membered ring macrolides and telithromycin against different genotypes of erythromycin-susceptible and erythromycin-resistant Streptococcus pyogenes and Streptococcus pneumoniae[J]. Journal of Antimicrobial Chemotherapy, 2007, 59(6): 1171-1176.
    [37] MARÍN P, FERNÁNDEZ-VARÓN E, ESCUDERO E, VANCRAEYNEST D, CÁRCELES CM. Pharmacokinetic-pharmacodynamic integration of orbifloxacin in rabbits after intravenous, subcutaneous and intramuscular administration[J]. Journal of Veterinary Pharmacology and Therapeutics, 2008, 31(1): 77-82.
    [38] IZAWA A, KISAKI Y, IRIE K, EDA Y, NAKAGOME T, KOMATSU T. Antibacterial activity of miloxacin[J]. Antimicrobial Agents and Chemotherapy, 1980, 18(1): 37-40.
    [39] WOOTTON M, WALSH TR, MACFARLANE L, HOWE RA. Activity of mecillinam against Escherichia coli resistant to third-generation cephalosporins[J]. Journal of Antimicrobial Chemotherapy, 2010, 65(1): 79-81.
    [40] HARADA K, SHIMIZU T, KATAOKA Y, TAKAHASHI T. Post-antibiotic effect of orbifloxacin against Escherichia coli and Pseudomonas aeruginosa isolates from dogs[J]. Acta Veterinaria Scandinavica, 2012, 54(1): 16.
    [41] BECNEL BOYD L, MAYNARD MJ, MORGAN- LINNELL SK, HORTON LB, SUCGANG R, HAMILL RJ, JIMENEZ JR, VERSALOVIC J, STEFFEN D, ZECHIEDRICH L. Relationships among ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant Escherichia coli clinical isolates[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(1): 229-234.
    [42] HUCZYŃSKI A, JANCZAK J, STEFAŃSKA J, ANTOSZCZAK M, BRZEZINSKI B. Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic-salinomycin[J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(14): 4697-4702.
    [43] BUCKLEY LM, McEWAN NA, NUTTALL T. Tris-EDTA significantly enhances antibiotic efficacy against multidrug-resistant Pseudomonas aeruginosa in vitro[J]. Veterinary Dermatology, 2013, 24(5): 519-e122.
    [44] PORTER MC, HENDERSON BA, HEALY PE, COOMBS GW, INGRAM PR, McLELLAN D, CLARK B. Can interchangeability of lincosamides be assumed in clinical practice? Comparative MICs of clindamycin and lincomycin for Streptococcus pyogenes, Streptococcus agalactiae and Staphylococcus aureus[J]. Journal of Antimicrobial Chemotherapy, 2014, 69(3): 856-857.
    [45] MATUSCHEK E, BROWN DFJ, KAHLMETER G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories[J]. Clinical Microbiology and Infection, 2014, 20(4): O255-O266.
    [46] VELLUTI F, MOSCONI N, ACEVEDO A, BORTHAGARAY G, CASTIGLIONI J, FACCIO R, BACK DF, MOYNA G, RIZZOTTO M, TORRE MH. Synthesis, characterization, microbiological evaluation, genotoxicity and synergism tests of new nano silver complexes with sulfamoxole X-ray diffraction of [Ag2(SMX)2]·DMSO[J]. Journal of Inorganic Biochemistry, 2014, 141: 58-69.
    [47] CLARK SM, LOEFFLER A, BOND R. Susceptibility in vitro of canine methicillin-resistant and-susceptible staphylococcal isolates to fusidic acid, chlorhexidine and miconazole: opportunities for topical therapy of canine superficial pyoderma[J]. Journal of Antimicrobial Chemotherapy, 2015, 70(7): 2048-2052.
    [48] LEI ZX, LIU QY, XIONG JC, YANG B, YANG SK, ZHU QQ, LI K, ZHANG SS, CAO JY, HE QG. Pharmacokinetic and pharmacodynamic evaluation of marbofloxacin and PK/PD modeling against Escherichia coli in pigs[J]. Frontiers in Pharmacology, 2017, 8: 542.
    [49] HODILLE E, BADIOU C, BOUVEYRON C, BES M, TRISTAN A, VANDENESCH F, LINA G, DUMITRESCU O. Clindamycin suppresses virulence expression in inducible clindamycin-resistant Staphylococcus aureus strains[J]. Annals of Clinical Microbiology and Antimicrobials, 2018, 17(1): 38.
    [50] BARMPA A, FROUSIOU O, KALOGIANNIS S, PERDIH F, TUREL I, PSOMAS G. Manganese(II) complexes of the quinolone family member flumequine: structure, antimicrobial activity and affinity for albumins and calf-Thymus DNA[J]. Polyhedron, 2018, 145: 166-175.
    [51] RUBIO-LANGRE S, AGUILAR-SOLA S, LORENZUTTI AM, SAN ANDRÉS MI, de LUCAS JJ, LITTERIO NJ. Pharmacokinetic evaluation of marbofloxacin after intravenous administration at different ages in llama crias, and pharmacokinetic/ pharmacodynamic analysis by Monte Carlo simulation[J]. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41(6): 861-870.
    [52] ZHANG XX, ZHANG YZ, WANG F, WANG C, CHEN LJ, LIU HY, LU H, WEN H, ZHOU TL. Unravelling mechanisms of nitrofurantoin resistance and epidemiological characteristics among Escherichia coli clinical isolates[J]. International Journal of Antimicrobial Agents, 2018, 52(2): 226-232.
    [53] NOEL AR, ATTWOOD M, BOWKER KE, KIM A, KRAUSE KM, MacGOWAN AP. Pharmacodynamics of plazomicin and a comparator aminoglycoside, amikacin, studied in an in vitro pharmacokinetic model of infection[J]. International Journal of Antimicrobial Agents, 2019, 54(5): 626-632.
    [54] de LYRA ACF, dos SANTOS SILVA AL, dos SANTOS ECL, LÓPEZ AMQ, Da SILVA JCS, FIGUEIREDO IM, SANTOS JCC. Molecular interaction of sulfonamides and ovalbumin, an allergenic egg protein, exploring biophysical, theoretical and biological studies[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117747.
    [55] NOEL A, ATTWOOD M, BOWKER K, MacGOWAN A. The pharmacodynamics of fosfomycin against Staphylococcus aureus studied in an in vitro model of infection[J]. International Journal of Antimicrobial Agents, 2020, 56(1): 105985.
    [56] ZHANG HL, WU SL, FU JL, JIANG HX, DING HZ. Research Note: Epidemiological cutoff values and acquired resistance mechanisms of three veterinary antibiotics against Escherichia coli from chicken respiratory tract infections[J]. Poultry Science, 2021, 100(2): 1093-1097.
    [57] NOEL AR, ATTWOOD M, BOWKER KE, MacGOWAN AP. The pharmacodynamics of minocycline alone and in combination with rifampicin against Staphylococcus aureus studied in an in vitro pharmacokinetic model of infection[J]. Journal of Antimicrobial Chemotherapy, 2021, 76(7): 1840-1844.
    [58] ASADI S, NAYERI-FASAEI B, ZAHRAEI-SALEHI T, YAHYA-RAYAT R, SHAMS N, SHARIFI A. Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli[J]. BMC Microbiology, 2023, 23(1): 55.
    [59] DiVINCENZO CA, SHATZER KL, VENEZIO FR. In vitro activity of lomefloxacin against multiply resistant Pseudomonas aeruginosa, Enterobacter cloacae, and Staphylococcus epidermidis[J]. Diagnostic Microbiology and Infectious Disease, 1989, 12(3 Suppl): 13S-16S.
    [60] JOHNSON RM, LI KL, CHEN XY, MORGAN GL, AUBÉ J, LI B. The hybrid antibiotic thiomarinol A overcomes intrinsic resistance in Escherichia coli using a privileged dithiolopyrrolone moiety[J]. ACS Infectious Diseases, 2024, 10(2): 582-593.
    [61] STONE TJ, KILIC A, WILLIAMSON JC, PALAVECINO EL. In vitro activity of omadacycline and comparator antibiotics against extended-spectrum Beta-Lactamase-producing Escherichia coli and Klebsiella pneumoniae urinary isolates[J]. Antibiotics, 2023, 12(6): 953.
    [62] SATRIA D, HARAHAP U, DALIMUNTHE A, SEPTAMA AW, HERTIANI T, NASRI N. Synergistic antibacterial effect of ethyl acetate fraction of Vernonia amygdalina delile leaves with tetracycline against clinical isolate Methicillin-resistant Staphylococcus aureus (mrsa) and Pseudomonas aeruginosa[J]. Advances in Pharmacological and Pharmaceutical Sciences, 2023, 2023(1): 2259534.
    [63] WANG JL, LAI CC, KO WC, HSUEH PR. Geographical patterns of in vitro susceptibilities to tigecycline and colistin among worldwide isolates of Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae: data from the antimicrobial testing leadership and surveillance (ATLAS) programme, 2016–2021[J]. International Journal of Antimicrobial Agents, 2023, 62(3): 106930.
    [64] van der MEIJDEN A, ARANZANA-CLIMENT V, van der SPEK H, de WINTER BCM, COUET W, MELETIADIS J, MULLER AE, van den BERG S. Pharmacokinetic and pharmacodynamic properties of polymyxin B in Escherichia coli and Klebsiella pneumoniae murine infection models[J]. Journal of Antimicrobial Chemotherapy, 2023, 78(3): 832-839.
    [65] HUANG CF, WANG JT, CHUANG YC, SHENG WH, CHEN YC. In vitro susceptibility of common Enterobacterales to eravacycline in Taiwan[J]. Journal of Microbiology, Immunology and Infection, 2023, 56(2): 358-366.
    [66] MESSELE YE, ALKHALLAWI M, VELTMAN T, TROTT DJ, McMENIMAN JP, KIDD SP, LOW WY, PETROVSKI KR. Phenotypic and genotypic analysis of antimicrobial resistance in Escherichia coli recovered from feedlot beef cattle in Australia[J]. Animals, 2022, 12(17): 2256.
    [67] CHEN PH, SUNG LK, HEGEMANN JD, CHU J. Disrupting transcription and folate biosynthesis leads to synergistic suppression of Escherichia coli growth[J]. ChemMedChem, 2022, 17(10): e202200075.
    [68] BAGDATLI E, CIL E. Sulfa drugs-based norbornenyl imides and reductive heck reactions: synthesis and antimicrobial screening[J]. Journal of Heterocyclic Chemistry, 2022, 59(2): 264-274.
    [69] MA YB, PIROLO M, SUBRAMANI P, GEHRING R, DAMBORG P, FRANZYK H, GUARDABASSI L. Macrolide resistance and in vitro potentiation by peptidomimetics in porcine clinical Escherichia coli[J]. mSphere, 2022, 7(5): e0040222.
    [70] GALECIO JS, ESCUDERO E, CORRALES JC, GARCÍA-ROMERO E, de la Fe C, HERNANDIS V, MARIN P. Susceptibility of caprine mastitis pathogens to tildipirosin, gamithromycin, oxytetracycline, and danofloxacin: effect of serum on the in vitro potency of current macrolides[J]. World Journal of Microbiology & Biotechnology, 2022, 38(12): 221.
    [71] XIAO X, CHEN XJ, YAN KX, JIANG LJ, LI RC, LIU Y, WANG MZ, WANG ZQ. PK/PD integration and pharmacodynamic cutoff of cefquinome against cow mastitis due to Escherichia coli[J]. Journal of Veterinary Pharmacology and Therapeutics, 2022, 45(1): 83-91.
    [72] FRATONI AJ, AVERY LM, NICOLAU DP, ASEMPA TE. In vivo pharmacokinetics and pharmacodynamics of ceftibuten/ledaborbactam, a novel oral β-lactam/ β-lactamase inhibitor combination[J]. Journal of Antimicrobial Chemotherapy, 2022, 78(1): 93-100.
    [73] NORM/NORM-VET. Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway[R]. Norway, 2022.
    [74] KHALIL A, JARADAT N, HAWASH M, ISSA L. In vitro biological evaluation of benzodioxol derivatives as antimicrobial and antioxidant agents[J]. Arabian Journal for Science and Engineering, 2021, 46(6): 5447-5453.
    [75] STEWART AG, COTTRELL K, HENDERSON A, VEMURI K, BAUER MJ, PATERSON DL, HARRIS PNA. In vitro activity of cefotetan against ESBL-producing Escherichia coli and Klebsiella pneumoniae bloodstream isolates from the merino trial[J]. Microbiology Spectrum, 2021, 9(1): e0022621.
    [76] ÖZTÜRK F, AYCAN T, ÇON AH. Spectroscopic, structural characterization and magnetic studies of Cu(II)-sulfathiazole complex with 1,10-phenanthroline and N-(2-hydroxyethyl)-ethylenediamine ligands[J]. Journal of Molecular Structure, 2020, 1202: 127220.
    [77] MERKATORIS P, SCHLEINING J, KRULL A, BORTS D, FAJT V. In vitro elution of penicillin, ampicillin, tetracycline, tulathromycin, and florfenicol from plaster of Paris beads[J]. Frontiers in Veterinary Science, 2020, 7: 585423.
    [78] JOHNSTON BD, THURAS P, PORTER SB, ANACKER M, VonBANK B, VAGNONE PS, WITWER M, CASTANHEIRA M, JOHNSON JR. Activity of imipenem-relebactam against carbapenem- resistant Escherichia coli isolates from the United States in relation to clonal background, resistance genes, coresistance, and region[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(5): e02408-19.
    [79] TUON FF, CIESLINSKI J, RODRIGUES SDS, SERRA FB, PAULA MD. Evaluation of in vitro activity of ceftolozane-tazobactam against recent clinical bacterial isolates from Brazil-the EM200 study[J]. The Brazilian Journal of Infectious Diseases, 2020, 24(2): 96-103.
    [80] BHOWMICK T, WEINSTEIN MP. Microbiology of meropenem-vaborbactam: a novel carbapenem beta-lactamase inhibitor combination for carbapenem- resistant enterobacterales infections[J]. Infectious Diseases and Therapy, 2020, 9(4): 757-767.
    [81] ROSTAMIZADEH S, DANESHFAR Z, MOGHIMI H. Synthesis of sulfamethoxazole and sulfabenzamide metal complexes; evaluation of their antibacterial activity[J]. European Journal of Medicinal Chemistry, 2019, 171: 364-371.
    [82] CHAN WY, HICKEY EE, KHAZANDI M, PAGE SW, TROTT DJ, HILL PB. In vitro antimicrobial activity of narasin against common clinical isolates associated with canine otitis externa[J]. Veterinary Dermatology, 2018, 29(2): 149-e57.
    [83] MIZDAL CR, STEFANELLO ST, NOGARA PA, ANTUNES SOARES FA, de LOURENÇO MARQUES L, de CAMPOS MMA. Molecular docking, and anti-biofilm activity of gold-complexed sulfonamides on Pseudomonas aeruginosa[J]. Microbial Pathogenesis, 2018, 125: 393-400.
    [84] DOMALAON R, SANCHAK Y, KOSKEI LC, LYU YF, ZHANEL GG, ARTHUR G, SCHWEIZER F. Short proline-rich lipopeptide potentiates minocycline and rifampin against multidrug- and extensively drug-resistant Pseudomonas aeruginosa[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(4): e02374-17.
    [85] PFALLER MA, FLAMM RK, DUNCAN LR, STREIT JM, CASTANHEIRA M, SADER HS. Antimicrobial activity of ceftobiprole and comparator agents when tested against contemporary Gram-positive and-negative organisms collected from Europe (2015)[J]. Diagnostic Microbiology and Infectious Disease, 2018, 91(1): 77-84.
    [86] BAI PY, QIN SS, CHU WC, YANG Y, CUI DY, HUA YG, YANG QQ, ZHANG E. Synthesis and antibacterial bioactivities of cationic deacetyl linezolid amphiphiles[J]. European Journal of Medicinal Chemistry, 2018, 155: 925-945.
    [87] CHANG PC, CHEN CC, LU YC, LAI CC, HUANG HL, CHUANG YC, TANG HJ. The impact of inoculum size on the activity of cefoperazone-sulbactam against multidrug resistant organisms[J]. Journal of Microbiology, Immunology and Infection, 2018, 51(2): 207-213.
    [88] CIEMNIAK K, CIELECKA-PIONTEK J, SZYMANOWSKA D, WIERGOWSKA G. Intereactions between doripenem and clavulanate: application of minimal inhibitory concentration analysis and cytometry flow for bactericidal studies[J]. Electronic Journal of Biotechnology, 2018, 32: 41-46.
    [89] LI H, ESTABROOK M, JACOBY GA, NICHOLS WW, TESTA RT, BUSH K. In vitro susceptibility of characterized β-lactamase-producing strains tested with avibactam combinations[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(3): 1789-1793.
    [90] CHEN LZ, YANG DX, PAN ZK, LAI LH, LIU JH, FANG BH, SHI SN. Synthesis and antimicrobial activity of the hybrid molecules between sulfonamides and active antimicrobial pleuromutilin derivative[J]. Chemical Biology & Drug Design, 2015, 86(2): 239-245.
    [91] PAPP-WALLACE KM, BAJAKSOUZIAN S, ABDELHAMED AM, FOSTER AN, WINKLER ML, GATTA JA, NICHOLS WW, TESTA R, BONOMO RA, JACOBS MR. Activities of ceftazidime, ceftaroline, and aztreonam alone and combined with avibactam against isogenic Escherichia coli strains expressing selected single β-lactamases[J]. Diagnostic Microbiology and Infectious Disease, 2015, 82(1): 65-69.
    [92] FERNANDES P, SOUSA I, CUNHA-SILVA L, FERREIRA M, de CASTRO B, PEREIRA EF, FEIO MJ, GAMEIRO P. Synthesis, characterization and antibacterial studies of a copper(II) lomefloxacin ternary complex[J]. Journal of Inorganic Biochemistry, 2014, 131: 21-29.
    [93] ALHAJLAN M, ALHARIRI M, OMRI A. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(6): 2694-2704.
    [94] FERRARESI C, LUCATELLO L, MEUCCI V, INTORRE L, GRILLI G, PICCIRILLO A, RUSSO E, VILLA R, MONTESISSA C, CAGNARDI P. Pharmacokinetic/pharmacodynamic evaluation of the efficacy of flumequine in treating colibacillosis in turkeys[J]. Poultry Science, 2013, 92(12): 3158-3165.
    [95] BUYCK JM, PLÉSIAT P, TRAORE H, VANDERBIST F, TULKENS PM, van BAMBEKE F. Increased susceptibility of Pseudomonas aeruginosa to macrolides and ketolides in eukaryotic cell culture media and biological fluids due to decreased expression of oprM and increased outer-membrane permeability[J]. Clinical Infectious Diseases, 2012, 55(4): 534-542.
    [96] GEBRU E, DAMTE D, CHOI MJ, LEE SJ, KIM YH, PARK SC. Mutant prevention concentration and phenotypic and molecular basis of fluoroquinolone resistance in clinical isolates and in vitro-selected mutants of Escherichia coli from dogs[J]. Veterinary Microbiology, 2012, 154(3/4): 384-394.
    [97] 钱丽旗, 马建丽, 权菊香, 郑彬丽, 李素那, 姚九莲, 姜玲敏. 柏黛膏的体外抗菌活性及其与青霉素的协同抑菌作用[J]. 中国临床药理学杂志, 2012, 28(10): 765-766. QIAN LQ, MA JL, QUAN JX, ZHENG BL, LI SN, YAO JL, JIANG LM. Antibacterial activity of medicinal extract for exterior application of BaifDai and its synergy effects with benzylpenicillin in vitro[J]. The Chinese Journal of Clinical Pharmacology, 2012, 28(10): 765-766(in Chinese).
    [98] BHAGUNDE P, SINGH R, LEDESMA KR, CHANG KT, NIKOLAOU M, TAM VH. Modelling biphasic killing of fluoroquinolones: guiding optimal dosing regimen design[J]. Journal of Antimicrobial Chemotherapy, 2011, 66(5): 1079-1086.
    [99] ZHANEL GG, DeCORBY M, NICHOL KA, WIERZBOWSKI A, BAUDRY PJ, TAILOR F, LAGACÉ-WIENS P, WALKTY A, FANELLA S, LARIOS O, MULVEY MR, McCRACKEN M, KARLOWSKY JA, The Canadian Antimicrobial Resistance Alliance cara, HOBAN DJ. Antimicrobial susceptibility of 6685 organisms isolated from Canadian hospitals: CANWARD 2007[J]. Canadian Journal of Infectious Diseases and Medical Microbiology, 2009, 20: 20A-30A.
    [100] EFTHIMIADOU EK, KATSAROU ME, KARALIOTA A, PSOMAS G. Copper(II) complexes with sparfloxacin and nitrogen-donor heterocyclic ligands: structure-activity relationship[J]. Journal of Inorganic Biochemistry, 2008, 102(4): 910-920.
    [101] ACHARD A, GUÉRIN-FAUBLÉE V, PICHEREAU V, VILLERS C, LECLERCQ R. Emergence of macrolide resistance gene mph(B) in Streptococcus uberis and cooperative effects with rdmC-like gene[J]. Antimicrobial Agents and Chemotherapy, 2008, 52(8): 2767-2770.
    [102] SAWANT AA, HEGDE NV, STRALEY BA, DONALDSON SC, LOVE BC, KNABEL SJ, JAYARAO BM. Antimicrobial-resistant enteric bacteria from dairy cattle[J]. Applied and Environmental Microbiology, 2007, 73(1): 156-163.
    [103] DONALDSON SC, STRALEY BA, HEGDE NV, SAWANT AA, DebROY C, JAYARAO BM. Molecular epidemiology of ceftiofur-resistant Escherichia coli isolates from dairy calves[J]. Applied and Environmental Microbiology, 2006, 72(6): 3940-3948.
    [104] STUBBINGS W, BOSTOCK J, INGHAM E, CHOPRA I. Mechanisms of the post-antibiotic effects induced by rifampicin and gentamicin in Escherichia coli[J]. Journal of Antimicrobial Chemotherapy, 2006, 58(2): 444-448.
    [105] HERMSEN ED, HOVDE LB, SPRANDEL KA, RODVOLD KA, ROTSCHAFER JC. Levofloxacin plus metronidazole administered once daily versus moxifloxacin monotherapy against a mixed infection of Escherichia coli and Bacteroides fragilis in an in vitro pharmacodynamic model[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(2): 685-689.
    [106] BRAGA PC, DAL SM, WOODNUTT G. Staphylococcus aureus and Escherichia coli adhesion to human cells is reduced by sub-MICs of gemifloxacin[J]. Journal of Chemotherapy, 2002, 14(1): 41-46.
    [107] OLIVER A, WEIGEL LM, RASHEED JK, McGOWAN JE Jr, RANEY P, TENOVER FC. Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli[J]. Antimicrobial Agents and Chemotherapy, 2002, 46(12): 3829-3836.
    [108] FIRSOV AA, ZINNER SH, LUBENKO IY, VOSTROV SN. Gemifloxacin and ciprofloxacin pharmacodynamics in an in-vitro dynamic model: prediction of the equivalent AUC/MIC breakpoints and doses[J]. International Journal of Antimicrobial Agents, 2000, 16(4): 407-414.
    [109] HUCZKO E, CONETTA B, BONNER D, VALERA L, STICKLE T, MACKO A, FUNG-TOMC J. Susceptibility of bacterial isolates to gatifloxacin and ciprofloxacin from clinical trials 1997–1998[J]. International Journal of Antimicrobial Agents, 2000, 16(4): 401-405.
    [110] DESHPANDE LM, DIEKEMA DJ, JONES RN. Comparative activity of clinafloxacin and nine other compounds tested against 2000 contemporary clinical isolates from patients in United States hospitals[J]. Diagnostic Microbiology and Infectious Disease, 1999, 35(1): 81-88.
    [111] COHEN MA, HUBAND MD, YODER SL, GAGE JW, ROLAND GE. Bacterial eradication by clinafloxacin, CI-990, and ciprofloxacin employing MBC test, in-vitro time-kill and in-vivo time-kill studies[J]. Journal of Antimicrobial Chemotherapy, 1998, 41(6): 605-614.
    [112] SALMON SA, WATTS JL, CASE CA, HOFFMAN LJ, WEGENER HC, JR YANCEY RJ. Comparison of MICs of ceftiofur and other antimicrobial agents against bacterial pathogens of swine from the United States, Canada, and Denmark[J]. Journal of Clinical Microbiology, 1995, 33(9): 2435-2444.
    [113] ONYEJI CO, NICOLAU DP, NIGHTINGALE CH, QUINTILIANI R. Optimal times above MICs of ceftibuten and cefaclor in experimental intra-abdominal infections[J]. Antimicrobial Agents and Chemotherapy, 1994, 38(5): 1112-1117.
    [114] ARGUEDAS AG, AKANIRO JC, STUTMAN HR, MARKS MI. In vitro activity of tosufloxacin, a new quinolone, against respiratory pathogens derived from cystic fibrosis sputum[J]. Antimicrobial Agents and Chemotherapy, 1990, 34(11): 2223-2227.
    [115] ROBBINS MJ, BASKERVILLE AJ, SANGHRAJKA M, MUMTAZ G, FELMINGHAM D, RIDGWAY GL, GRÜNEBERG RN. Comparative in vitro activity of lomefloxacin, a difluoro-quinolone[J]. Diagnostic Microbiology and Infectious Disease, 1989, 12(3): 65-76.
    [116] KNAPP CC, SIERRA-MADERO J, WASHINGTON JA. Antibacterial activities of cefpodoxime, cefixime, and ceftriaxone[J]. Antimicrobial Agents and Chemotherapy, 1988, 32(12): 1896-1898.
    [117] LIU PY, KO WC, LEE WS, LU PL, CHEN YH, CHENG SH, LU MC, LIN CY, WU TS, YEN MY, WANG LS, LIU CP, SHAO PL, LEE YL, SHI ZY, CHEN YS, WANG FD, TSENG SH, LIN CN, CHEN YH, et al. In vitro activity of cefiderocol, cefepime/enmetazobactam, cefepime/zidebactam, eravacycline, omadacycline, and other comparative agents against carbapenem-non-susceptible Pseudomonas aeruginosa and Acinetobacter baumannii isolates associated from bloodstream infection in Taiwan between 2018–2020[J]. Journal of Microbiology, Immunology and Infection, 2022, 55(5): 888-895.
    [118] MEI JA, JOHNSON W, KINN B, LASKEY E, NOLIN L, BHAMARE P, STALKER C, DUNMAN PM, WOZNIAK RAF. Antimicrobial activity of a triple antibiotic combination toward ocular Pseudomonas aeruginosa clinical isolates[J]. Translational Vision Science & Technology, 2022, 11(5): 26.
    [119] HEFFERNAN AJ, SIME FB, LIM SMS, ADIRAJU S, WALLIS SC, LIPMAN J, GRANT GD, ROBERTS JA. Pharmacodynamics of ceftriaxone for the treatment of methicillin‐susceptible Staphylococcus aureus: is it a viable treatment option?[J]. International Journal of Antimicrobial Agents, 2022, 59(3): 106537.
    [120] RADWAN AA,AANAZI FK,AL-AGAMY M,MAHROUS GM.Design,synthesis and molecular modeling study of substituted indoline-2-ones and spiro[indole-heterocycles]with potential activity against Gram-positive bacteria[J].Acta Pharmaceutica,2022,72(1):79-95.
    [121] SOUSA MGDC,XAVIER PD,CANTUÁRIA APC,AMORIM IA,ALMEIDA JA,FRANCO OL,REZENDE TMB.Antimicrobial and immunomodulatory in vitro profile of double antibiotic paste[J].International Endodontic Journal,2021,54(10):1850-1860.
    [122] IVANCHIK NV,SUKHORUKOVA MV,CHAGARYAN AN,TRUSHIN IV,DEKHNICH AV,KOZLOV RS.In vitro activity of thiamphenicol against Haemophilus influenzae,Streptococcus pneumoniae and Streptococcus pyogenes clinical isolates[J].Clinical Microbiology and Antimicrobial Chemotherapy,2021,23(1):92-99.
    [123] MOORE JA,MEAKIN M,EARL MH,KUMMER TM,McALEER JP,LONG TE.Effects of caspofungin,tolcapone and other FDA-approved medications on MRSA susceptibility to vancomycin[J].Journal of Global Antimicrobial Resistance,2020,22:283-289.
    [124] LACOMA A,USÓN L,MENDOZA G,SEBASTIÁN V,GARCIA-GARCIA E,MURIEL-MORENO B,DOMÍNGUEZ J,ARRUEBO M,PRAT C.Novel intracellular antibiotic delivery system against Staphylococcus aureus:cloxacillin-loaded poly (d,l-lactide-co-glycolide) acid nanoparticles[J].Nanomedicine,2020,15(12):1189-1203.
    [125] CARVALHAES CG,HUBAND MD,REINHART HH,FLAMM RK,SADER HS.Antimicrobial activity of omadacycline tested against clinical bacterial isolates from hospitals in China's mainland,Hong Kong,and Taiwan:results from the SENTRY antimicrobial surveillance program (2013-2016)[J].Antimicrobial Agents and Chemotherapy,2019,63(3):e02262-18.
    [126] WICHA WW,STRICKMANN DB,PAUKNER S.Pharmacokinetics/pharmacodynamics of lefamulin in a neutropenic murine pneumonia model with Staphylococcusaureus and Streptococcus pneumoniae[J].Journal of Antimicrobial Chemotherapy,2019,74(Suppl 3):iii11-iii18.
    [127] ILIZIROV Y,FORMANOVSKY A,MIKHURA I,PAITAN Y,NAKONECHNY F,NISNEVITCH M.Effect of photodynamic antibacterial chemotherapy combined with antibiotics on gram-positive and gram-negative bacteria[J].Molecules,2018,23(12):3152.
    [128] ASEMPA T,NICOLAU D,KUTI J.888:in vitro activity of imipenem/relebactam against pseudomonas aeruginosa isolates from U.S.hospitals[J].Critical Care Medicine.2019;47(1):423-423.
    [129] TAHTACI H,KARACıK H,ECE A,ER M,ŞEKER MG.Design,synthesis,SAR and molecular modeling studies of novel imidazo[2,1-b][1,3,4] thiadiazole derivatives as highly potent antimicrobial agents[J].Molecular Informatics,2018,37(3):1700083.
    [130] PEHLIVAN V,BIÇER E,BEKIROĞLU YG,DEGE N.Electrochemical and spectroscopic studies on the interaction modes of calf Thymus DNA with antibacterial schiff bases obtained from substituted salicylaldehydes and sulfamethizole[J].International Journal of Electrochemical Science,2018,13(11):10700-10717.
    [131] KIM JH,YU D,EOM SH,KIM SH,OH J,JUNG WK,KIM YM.Synergistic antibacterial effects of chitosan-caffeic acid conjugate against antibiotic-resistant acne-related bacteria[J].Marine Drugs,2017,15(6):167.
    [132] BROWN-ELLIOTT BA,JR WALLACE RJ.In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria[J].Journal of Clinical Microbiology,2017,55(6):1747-1754.
    [133] LI SG,GUO Y,ZHAO CJ,CHEN HB,HU BJ,CHU YZ,ZHANG ZJ,HU YJ,LIU ZY,DU Y,GUI QD,JI P,ZENG J,CAO B,FU Q,ZHANG R,WANG ZX,ZHUO C,FENG XJ,JIA W,et al.In vitro activities of tedizolid compared with other antibiotics against Gram-positive pathogens associated with hospital-acquired pneumonia,skin and soft tissue infection and bloodstream infection collected from 26 hospitals in China[J].Journal of Medical Microbiology,2016,65(10):1215-1224.
    [134] CANTÓN R,LIVERMORE DM,MOROSINI MI,DÍAZ-REGAÑÓN J,ROSSOLINI GM,GROUP PS.E-test®versus broth microdilution for ceftaroline MIC determination with Staphylococcus aureus:results from PREMIUM,a European multicentre study[J].Journal of Antimicrobial Chemotherapy,2017,72(2):431-436.
    [135] WEI CF,CHANG SK,SHIEN JH,KUO HC,CHEN WY,CHOU CC.Synergism between two amphenicol of antibiotics,florfenicol and thiamphenicol,against Staphylococcus aureus[J].Veterinary Record,2016,178(13):319.
    [136] YIM J,SMITH JR,BARBER KE,HALLESY JA,RYBAK MJ.Evaluation of pharmacodynamic interactions between telavancin and aztreonam or Piperacillin/Tazobactam against Pseudomonas aeruginosa,Escherichia coli and Methicillin-resistant Staphylococcus aureus[J].Infectious Diseases and Therapy,2016,5(3):367-377.
    [137] McDOUGALL S,HUSSEIN H,PETROVSKI K.Antimicrobial resistance in Staphylococcus aureus,Streptococcus uberis and Streptococcus dysgalactiae from dairy cows with mastitis[J].New Zealand Veterinary Journal,2014,62(2):68-76.
    [138] HADDADIN RNS,SALEH S,AL-ADHAM ISI,BUULTJENS TEJ,COLLIER PJ.The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by Staphylococcus aureus biofilms[J].Journal of Applied Microbiology,2010,108(4):1281-1291.
    [139] AARESTRUP FM,SKOV RL.Evaluation of ceftiofur and cefquinome for phenotypic detection of methicillin resistance in Staphylococcus aureus using disk diffusion testing and MIC-determinations[J].Veterinary Microbiology,2010,140(1/2):176-179.
    [140] SADER HS,BECKER HK,MOET GJ,JONES RN.Antimicrobial activity of daptomycin tested against Staphylococcus aureus with vancomycin MIC of 2μg/mL isolated in the United States and European hospitals (2006-2008)[J].Diagnostic Microbiology and Infectious Disease,2010,66(3):329-331.
    [141] HAAS W,PILLAR CM,HESJE CK,SANFILIPPO CM,MORRIS TW.Bactericidal activity of besifloxacin against staphylococci,Streptococcus pneumoniae and Haemophilus influenzae[J].Journal of Antimicrobial Chemotherapy,2010,65(7):1441-1447.
    [142] FRITSCHE TR,SADER HS,STILLWELL MG,JONES RN.Antimicrobial activity of doripenem tested against prevalent gram-positive pathogens:results from a global surveillance study (2003-2007)[J].Diagnostic Microbiology and Infectious Disease,2009,63(4):440-446.
    [143] GEORNARAS I,von HOLY A.Antimicrobial susceptibilities of isolates of Staphylococcus aureus,Listeria species and Salmonella serotypes associated with poultry processing[J].International Journal of Food Microbiology,2001,70(1/2):29-35.
    [144] ODLAND BA,ERWIN ME,JONES RN.Quality control guidelines for disk diffusion and broth microdilution antimicrobial susceptibility tests with seven drugs for veterinary applications[J].Journal of Clinical Microbiology,2000,38(1):453-455.
    [145] MacGOWAN AP,BOWKER KE,WOOTTON M,HOLT HA.Exploration of the in-vitro pharmacodynamic activity of moxifloxacin for Staphylococcus aureus and Streptococci of lancefield groups A and G[J].The Journal of Antimicrobial Chemotherapy,1999,44(6):761-766.
    [146] JONES RN,ERWIN ME.In vitro susceptibility testing and quality control parameters for sarafloxacin (A-56620):a fluoroquinolone used for treatment and control of colibacillosis in poultry[J].Diagnostic Microbiology and Infectious Disease,1998,32(1):55-64.
    [147] NORDEN CW,BUDINSKY A.Treatment of experimental chronic osteomyelitis due to staphylococcus aureus with ampicillin/sulbactam[J].The Journal of Infectious Diseases,1990,161(1):52-53.
    [148] WADI MA.In vitro antibacterial activity of different honey samples against clinical isolates[J].BioMed Research International,2022,2022:1560050.
    [149] OJDANA D,SIEŃKO A,SACHA P,MAJEWSKI P,WIECZOREK P,WIECZOREK A,TRYNISZEWSKA E.Genetic basis of enzymatic resistance of E.coli to aminoglycosides[J].Advances in Medical Sciences,2018,63(1):9-13.
    [150] GRILLON A,SCHRAMM F,KLEINBERG M,JEHL F.Comparative activity of ciprofloxacin,levofloxacin and moxifloxacin against Klebsiella pneumoniae,Pseudomonas aeruginosa and Stenotrophomonas maltophilia assessed by minimum inhibitory concentrations and time-kill studies[J].PLoS One,2016,11(6):e0156690.
    [151] KIFFER CRV,KUTI JL,EAGYE KJ,MENDES C,NICOLAU DP.Pharmacodynamic profiling of imipenem,meropenem and ertapenem against clinical isolates of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella spp.from Brazil[J].International Journal of Antimicrobial Agents,2006,28(4):340-344.
    [152] DILWORTH TJ,SLIWINSKI J,RYAN K,DODD M,MERCIER RC.Evaluation of vancomycin in combination with piperacillin-tazobactam or oxacillin against clinical methicillin-resistant Staphylococcus aureus isolates and vancomycin-intermediate S.aureus isolates in vitro[J].Antimicrobial Agents and Chemotherapy,2014,58(2):1028-1033.
    [153] Di BONAVENTURA G,D'ANTONIO D,CATAMO G,BALLONE E,PICCOLOMINI R.Comparison of E-test,agar dilution,broth microdilution and disk diffusion methods for testing in vitro activity of levofloxacin against Staphylococcus spp.isolated from neutropenic cancer patients[J].International Journal of Antimicrobial Agents,2002,19(2):147-154.
    [154] AMSLER K,SANTORO C,FOLENO B,BUSH K,FLAMM R.Comparison of broth microdilution,agar dilution,and E-test for susceptibility testing of doripenem against gram-negative and gram-positive pathogens[J].Journal of Clinical Microbiology,2010,48(9):3353-3357.
    [155] BALOUIRI M,SADIKI M,IBNSOUDA SK.Methods for in vitro evaluating antimicrobial activity:a review[J].Journal of Pharmaceutical Analysis,2016,6(2):71-79.
    [156] KHAN ZA,SIDDIQUI MF,PARK S.Current and emerging methods of antibiotic susceptibility testing[J].Diagnostics,2019,9(2):49.
    [157] ZENG DN,DEBABOV D,HARTSELL TL,CANO RJ,ADAMS S,SCHUYLER JA,McMILLAN R,PACE JL.Approved glycopeptide antibacterial drugs:mechanism of action and resistance[J].Cold Spring Harbor Perspectives in Medicine,2016,6(12):a026989.
    [158] 崔笑博.禽源大肠杆菌的分离鉴定,耐药性分析及联合药敏试验的研究[D].泰安:山东农业大学硕士学位论文,2014. CUI XB.Isolation and identification,resistance analysis and combined medicine sensitive experiment research of avian Escherichia coli[D].Tai'an:Master's Thesis of Shandong Agricultural University,2014(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李菲菲,杨文迪,陈吕军,温东辉. 环境抗生素耐药性风险评价中最小抑菌浓度的研究进展[J]. 微生物学通报, 2024, 51(12): 4984-5005

复制
分享
文章指标
  • 点击次数:109
  • 下载次数: 105
  • HTML阅读次数: 188
  • 引用次数: 0
历史
  • 收稿日期:2024-07-14
  • 录用日期:2024-11-28
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码